
teletype - manual

Contents

Introduction 4

Updates 5

v5.0.0 . 5

v4.0.0 . 6

v3.2.0 . 7

Version 3.1 . 7

Version 3.0 . 8

Version 2.2 . 12

Version 2.1 . 14

Version 2.0 . 16

Quickstart 19

Panel . 19

LIVE mode . 19

EDIT mode . 20

Patterns . 22

Scenes . 23

USB Backup . 24

Commands . 24

Continuing . 26

Keys 27

Global key bindings . 27

Text editing . 27

Live mode . 28

Edit mode . 28

Tracker mode . 29

Preset read mode . 30

Preset write mode . 31

Help mode . 31

1

OPs and MODs 32

Variables . 33

Hardware . 36

Pitch . 41

Rhythm . 45

Metronome . 48

Randomness . 49

Control flow . 51

Maths . 61

Delay . 65

Stack . 67

Patterns . 69

Queue . 75

Turtle . 81

Grid . 83

MIDI in . 99

Calibration . 101

Generic I2C . 104

Ansible . 106

White Whale . 110

Meadowphysics . 113

Earthsea . 114

Orca . 116

Just Friends . 118

16n . 122

ER-301 . 123

TELEXi . 124

TELEXo . 128

Crow . 143

W/ . 145

W/2.0 . 146

W/2.0 tape . 147

W/2.0 delay . 149

W/2.0 synth . 150

2

Disting EX . 152

Matrixarchate . 158

i2c2midi . 159

Advanced 180

Teletype terminology . 180

Sub commands . 181

Aliases . 181

Avoiding non-determinism . 182

Grid integration . 183

Alphabetical list of OPs and MODs 185

Missing documentation 235

Changelog 236

v5.0.0 . 236

v4.0.0 . 237

v3.2.0 . 238

v3.1.0 . 238

v3.0.0 . 239

v2.2 . 239

v2.1 . 240

v2.0.1 . 241

v2.0 . 241

v1.4.1 . 242

v1.2.1 . 242

v1.2 . 242

v1.1 . 243

v1.0 . 243

3

Introduction

Teletype is a dynamic, musical event triggering platform.

• Teletype Studies1 - guided series of tutorials

• PDF command reference chart2 — PDF scene recall sheet3 — Default scenes4

• Current version: 5.0.0 — Firmware update procedure5

1https://monome.org/docs/modular/teletype/studies-1
2https://monome.org/docs/teletype/TT_commands_3.0.pdf
3https://monome.org/docs/teletype/TT_scene_RECALL_sheet.pdf
4http://monome.org/docs/teletype/scenes-10/
5https://monome.org/docs/modular/update/

4

https://monome.org/docs/modular/teletype/studies-1
https://monome.org/docs/teletype/TT_commands_3.0.pdf
https://monome.org/docs/teletype/TT_scene_RECALL_sheet.pdf
http://monome.org/docs/teletype/scenes-10/
https://monome.org/docs/modular/update/

Updates

v5.0.0

• FIX: fix off-by-one error in P.ROT understanding of pattern length
• FIX: fix CROW.Q3 calls ii.self.query2 instead of ii.self.query3
• FIX: cache currently-running commands to avoid corruption during SCENE ops.
• FIX: delay when opening docs
• FIX: PROB 100 would execute only 99.01% of the time.
• FIX: some G.FDR configurations caused incorrect rendering in grid visualizer
• FIX: fix EX.LP not returning correct values
• FIX: fix QT.B handling of negative voltage input
• IMP: scene load/save code refactor, add scene load/save tests
• IMP: fader ops now support up to four faderbanks
• NEW: new Disting EX ops: dual algorithms, EX.M.N#, EX.M.NO#, EX.M.CC#
• FIX: reset M timer when changing metro rate
• NEW: drum ops: DR.P, DR.V, DR.TR
• NEW: I2C2MIDI6 ops
• FIX: fix BPM rounding error
• FIX: support all line ending types for USB load
• FIX: fix STATE not accounting for DEVICE.FLIP
• FIX: fix MIDI IN ops channel number being off by 1
• FIX: improve TR.P accuracy
• FIX: fix KILL not stopping TR pulses in progress
• NEW: new op: SCALE0 / SCL0
• NEW: new ops: $F, $F1, $F2, $L, $L1, $L2, $S, $S1, $S2, I1, I2, FR
• NEW: new op: CV.GET
• NEW: basic menu for reading/writing scenes when a USB stick is inserted
• NEW: new ops: CV.CAL and CV.CAL.RESET to calibrate CV outputs
• FIX: N.CS scales 7 & 8 were incorrectly swapped; make them consistent with N.S

and docs
• FIX: libavr32 update: support CDC grid size detection (e.g. zero), increase HID

message buffer
• NEW: new Disting EX ops: EX.CH, EX.#, EX.N#, EX.NO#
• NEW: apply VCV Rack compatibility patches, so branches off main can be used

in both hardware and software
• FIX: update Disting EX looper ops to work with Disting EX firmware 1.23+
• NEW: new dual W/ ops: W/.SEL, W/S.POLY, W/S.POLY.RESET, W/1, W/2
• NEW: split cheatsheets into separate PDFs for core ops and i2c

6https://github.com/attowatt/i2c2midi

5

https://github.com/attowatt/i2c2midi

v4.0.0

• FIX: LAST SCRIPT in live mode gives time since init script was run
• FIX: negative pattern values are properly read from USB
• FIX: delay when navigating to sections in docs
• NEW: generic i2c ops: IIA, IIS.., IIQ.., IIB..
• NEW: exponential delay operator DEL.G
• NEW: binary and hex format for numbers: B..., X...
• NEW: Disting EX ops
• FIX: LAST n is broken for script 1
• NEW: bitmasked delay and quantize: DEL.B.., QT.B.., QT.BX..
• NEW: scale and chord quantize: QT.S.., QT.CS..
• NEW: bit toggle OP: BTOG..
• NEW: volts to semitones helper OP: VN..
• IMP: DELAY_SIZE increased to 64 from 16
• FIX: scale degree arguments 1-indexed: N.S, N.CS
• NEW: Just Friends 4.0 OPs and dual JF OPs
• NEW: binary scale ops N.B and N.BX
• NEW: reverse binary for numbers: R...
• NEW: reverse binary OP: BREV
• NEW: ES.CV read earthsea CV values
• NEW: added setter for R, sets R.MIN and R.MAX to same value, allowing R to be

used as variable
• NEW: v/oct to hz/v conversion op: HZ
• FIX: W/2.0 ops added
• NEW: W/2.0 ops documentation
• NEW: ><, <>, >=< and <=> OPs, checks if value is within or outside of range
• IMP: new powerful Q OPs
• IMP: Improved line editing movement (forward/backward by word skips interven-

ing space).
• NEW: Delete to end of word command alt-d added.
• NEW: new multi-logic OPs AND3, AND4, OR3 and OR4 with aliases &&&, &&&&, |||

and ||||
• NEW: ops to control live mode: LIVE.OFF, LIVE.VARS, LIVE.GRID,
LIVE.DASH, PRINT

• NEW: SCENE.P OP: load another scene but keep current pattern state
• NEW: alias: EV for EVERY
• NEW: live mode dashboard
• NEW: ops to control live mode: LIVE.OFF, LIVE.VARS, LIVE.GRID,
LIVE.DASH, PRINT

• FIX: PN.ROT parameters are swapped
• FIX: better rendering for fine grid faders
• FIX: logical operators should treat all non zero values as true, not just positive

values
• NEW: crow ops
• NEW: TI.PRM.CALIB alias added (was already in the docs)
• FIX: SCENE would crash if parameter was out of bounds

6

v3.2.0

• FIX: improve DAC latency when using CV ops
• NEW: call metro / init with SCRIPT 9 / SCRIPT 10
• NEW: forward (C-f or C-s) and reverse (C-r) search in help mode
• NEW: new ops: LROT (alias <<<), RROT (alias >>>)
• NEW: LSH and RSH shift the opposite direction when passed a negative shift

amount
• NEW: new op: SGN (sign of argument)
• NEW: new kria remote op: KR.DUR
• NEW: new op: NR (binary math pattern generator)
• NEW: new ops: N.S, N.C, N.CS (use western scales and chords to get values

from N table)
• NEW: new ops: FADER.SCALE, FADER.CAL.MIN, FADER.CAL.MAX,
FADER.CAL.RESET for scaling 16n Faderbank values (aliases FB.S,
FB.C.MIN, FB.C.MAX, FB.C.R)

• NEW: new Tracker mode keybinding alt-[] semitone up, down
• NEW: new Tracker mode keybinding ctrl-[] fifth up, down
• NEW: new Tracker mode keybinding shift-[] octave up, down
• NEW: new Tracker mode keybinding alt-<0-9> <0-9> semitones up (0=10,

1=11)
• NEW: new Tracker mode keybinding shift-alt-<0-9> <0-9> semitones

down (0=10, 1=11)
• FIX: dim M in edit mode when metro inactive
• NEW: new pattern ops: P.SHUF, PN.SHUF, P.REV, PN.REV, P.ROT, PN.ROT
• NEW: new pattern mods: P.MAP:, PN.MAP x:

Version 3.1

New operators

DEVICE.FLIP - change how screen is displayed and how I/O are numbered to let you
mount the module upside down

DEL.X, DEL.R - repeat an action multiple times, separated by a delay

J & K local script variables

SEED, R.SEED, TOSS.SEED, DRUNK.SEED, P.SEED, PROB.SEED - get/set seed for dif-
ferent random ops

SCENE.G - load another scene but keep the current grid configuration

SCRIPT.POL / $.POL - get / set script polarity. 1 to fire on rising edges as usual, 2 for
falling edges, 3 for both. indicated on live mode w/ mutes icon.

7

New Ansible ops

ANS.G / ANS.G.P - simulate ansible receiving a grid key press

ANS.A - simulate ansible receiving an arc encoder turn

ANS.G.LED / ANS.A.LED - read LED brightness of ansible grid / arc

New Kria ops

KR.CUE - get / set the cued Kria pattern

KR.PG - switch to Kria parameter page

Changes

DELAY_SIZE increased to 16 from 8

Bug fixes

some keyboards losing keystrokes7

metro rate not updated after INIT.SCENE8

Version 3.0

Major new features

Grid Integration

Grid integration allows you to use grid to visualize, control and execute teletype scripts.
You can create your own UIs using grid ops, or control Teletype directly with the Grid
Control mode. Built in Grid Visualizer allows designing and using grid scenes without a
grid. For more information and examples of grid scenes please see the Grid Studies9.

Improved script editing

You can now select multiple lines when editing scripts by holding shift. You can
move the current selection up and down with alt-<up> and alt-<down>. You can

7https://github.com/monome/teletype/issues/156
8https://github.com/monome/teletype/issues/174
9https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

8

https://github.com/monome/teletype/issues/156
https://github.com/monome/teletype/issues/174
https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

copy/cut/paste a multiline selection as well. To delete selected lines without copying
into the clipboard use alt-<delete>.

Three level undo is also now available with ctrl-z shortcut.

Support for the Orthogonal Devices ER-301 Sound Computer over i2c

You now can connect up to three ER-301s via i2c and address up to 100 virtual CV chan-
nels and 100 virtual TR channels per ER-301. (The outputs range 1-100, 101-200, and
201-300 respectively.) To function, this requires a slight mod to current in-market ER-
301s and a specialized i2c cable that reorders two of the pins. Find more information
on the Orthogonal Devices ER-301 Wiki Teletype Integration Page10.

Support for the 16n Faderbank via i2c

The 16n Faderbank is an open-source sixteen fader controller with support for USB
MIDI, standard MIDI, and i2c communication with the Teletype. It operates just like an
IN or PARAM (or the TXi for that matter) in that you read values from the device. You
use the operator FADER (or the alias FB) and the number of the slider you wish to poll
(1-16). Know that longer cables may require that you use a powered bus board even
if you only have one device on your Teletype’s i2c bus. (You will know that you have a
problem if your Teletype randomly hangs on reads.)

Support for the SSSR Labs SM010 Matrixarchate via i2c

The SSSR Labs SM010 Matrixarchate is a 16x8 IO Sequenceable Matrix Signal Router.
Teletype integration allows you to switch programs and control connections. For a
complete list of available ops refer to the manual. Information on how to connect the
module can be found in the SM010 manual11.

Support for W/ via i2c

Support for controlling Whimsical Raps W/ module via i2c. See the respective section
for a complete list of available ops and refer to https://www.whimsicalraps.com/pages/w-
type for more details.

New operators

? x y z is a ternary “if” operator, it will select between y and z based on the condition
x.

10http://wiki.orthogonaldevices.com/index.php/ER-301/Teletype_Integration
11https://www.sssrlabs.com/store/sm010/

9

http://wiki.orthogonaldevices.com/index.php/ER-301/Teletype_Integration
https://www.sssrlabs.com/store/sm010/

New pattern ops

P.MIN PN.MIN P.MAX PN.MAX return the position for the first smallest/largest value
in a pattern between the START and END points.

P.RND / PN.RND return a randomly selected value in a pattern between the START and
END points.

P.+ / PN.+ / P.- / PN.- increment/decrement a pattern value by the specified
amount.

P.+W / PN.+W / P.-W / PN.-W same as above and wrap to the specified range.

New Telex ops

TO.CV.CALIB allows you to lock-in an offset across power cycles to calibrate your
TELEX CV output (TO.CV.RESET removes the calibration).

TO.ENV now accepts gate values (1/0) to trigger the attack and decay.

New Kria ops

KR.CV x get the current CV value for channel x

KR.MUTE x KR.MUTE x y get/set mute state for channel x

KR.TMUTE x toggle mute state for channel x

KR.CLK x advance the clock for channel x

Ops for ER-301, 16n Faderbank, SM010, W/

Too many to list, please refer to their respective sections.

New aliases

$ for SCRIPT

RND / RRND RAND / RRAND

WRP for WRAP

SCL for SCALE

New keybindings

Hold shift while making line selection in script editing to select multiple lines. Use
alt-<up> and alt-<down> to move selected lines up and down. Copy/cut/paste

10

shortcuts work with multiline selection as well. To delete selected lines without copy-
ing into the clipboard use alt-<delete>.

While editing a line you can now use ctrl-<left> / ctrl-<right> to move by
words.

ctrl-z provides three level undo in script editing.

Additional Alt-H shortcut is available to view the Help screen.

Alt-G in Live mode will turn on the Grid Visualizer, which has its own shortcuts. Refer
to the Keys section for a complete list.

The keybindings to insert a scaled knob value in the Tracker mode were changed from
ctrl to ctrl-alt and from shift to ctrl-shift.

Bug fixes

i2c initialization delayed to account for ER-301 bootup

last screen saved to flash

knob jitter when loading/saving scenes reduced

duplicate commands not added to history12

SCALE precision improved

PARAM set properly when used in the init script

PARAM and IN won’t reset to 0 after INIT.DATA

PN.HERE, P.POP, PN.POP will update the tracker screen13

P.RM was 1-based, now 0-based14

P.RM / PN.RM will not change pattern length if deleting outside of length range15

JI op fixed16

TIME and LAST are now 1ms accurate17

RAND / RRAND will properly work with large range values18

L .. 32767 won’t freeze19

12https://github.com/monome/teletype/issues/99
13https://github.com/monome/teletype/issues/151
14https://github.com/monome/teletype/issues/149
15https://github.com/monome/teletype/issues/150
16https://llllllll.co/t/teletype-the-ji-op/10553
17https://github.com/monome/teletype/issues/144
18https://github.com/monome/teletype/issues/143
19https://github.com/monome/teletype/issues/148

11

https://github.com/monome/teletype/issues/99
https://github.com/monome/teletype/issues/151
https://github.com/monome/teletype/issues/149
https://github.com/monome/teletype/issues/150
https://llllllll.co/t/teletype-the-ji-op/10553
https://github.com/monome/teletype/issues/144
https://github.com/monome/teletype/issues/143
https://github.com/monome/teletype/issues/148

New behavior

Previously, when pasting the clipboard while in script editing the pasted line would
replace the current line. It will now instead push the current line down. This might
result in some lines being pushed beyond the script limits - if this happens, use ctrl-
z to undo the change, delete some lines and then paste again.

Iwould previously get initialized to 0 when executing a script. If you called a script from
another script’s loop this meant you had to use a variable to pass the loop’s current I
value to the called script. This is not needed anymore - when a script is called from
another script its I value will be set to the current I value of the calling script.

Version 2.2

Teletype version 2.2 introduces Chaos and Bitwise operators, Live mode view of vari-
ables, INIT operator, ability to calibrate CV In and Param knob and set Min/Max scale
values for both, a screensaver, Random Number Generator, and a number of fixes and
improvements.

Major new features

Chaos Operators

The CHAOS operator provides a new source of uncertainty to the Teletype via chaotic
yet deterministic systems. This operator relies on various chaotic maps for the cre-
ation of randomized musical events. Chaotic maps are conducive to creating music
because fractals contain a symmetry of repetition that diverges just enough to create
beautiful visual structures that at times also apply to audio. In mathematics a map is
considered an evolution function that uses polynomials to drive iterative procedures.
The output from these functions can be assigned to control voltages. This works be-
cause chaotic maps tend to repeat with slight variations offering useful oscillations
between uncertainty and predictability.

Bitwise Operators

Bitwise operators have been added to compliment the logic functions and offer the
ability to maximize the use of variables available on the Teletype.

Typically, when a variable is assigned a value it fully occupies that variable space;
should you want to set another you’ll have to use the next available variable. In condi-
tions where a state of on, off, or a bitwise mathematical operation can provide the data
required, the inclusion of these operators give users far more choices. Each variable
normally contains 16 bits and Bitwise allows you to BSET, BGET, and BCLR a value from
a particular bit location among its 16 positions, thus supplying 16 potential flags in the
same variable space.

12

INIT

The new op family INIT features operator syntax for clearing various states from the
unforgiving INIT with no parameters that clears ALL state data (be careful as there is
no undo) to the ability to clear CV, variable data, patterns, scenes, scripts, time, ranges,
and triggers.

Live Mode Variable Display

This helps the user to quickly check and monitor variables across the Teletype. Instead
of single command line parameter checks the user is now able to simply press the ~
key (Tilde) and have a persistent display of eight system variables.

Screensaver

Screen saver engages after 90 minutes of inactivity

New Operators

• IN.SCALE min max sets the min/max values of the CV Input jack
• PARAM.SCALE min max set the min/max scale of the Parameter Knob
• IN.CAL.MIN sets the zero point when calibrating the CV Input jack
• IN.CAL.MAX sets the max point (16383) when calibrating the CV Input jack
• PARAM.CAL.MIN sets the zero point when calibrating the Parameter Kob
• PARAM.CAL.MAX sets the max point (16383) when calibrating the Parameter Kob
• R generate a random number
• R.MIN set the low end of the random number generator
• R.MAX set the upper end of the random number generator

Fixes

• Multiply now saturates at limits (-32768 / 32767) while previous behavior re-
turned 0 at overflow

• Entered values now saturate at Int16 limits which are -32768 / 32767
• Reduced flash memory consumption by not storing TEMP script
• I now carries across DEL commands
• Corrected functionality of JI (Just Intonation) op for 1V/Oct tuning
• Reduced latency of IN op

Improvements

• Profiling code (optional developer feature)
• Screen now redraws only lines that have changed

13

Version 2.1

Teletype version 2.1 introduces new operators that mature the syntax and capability of
the Teletype, as well as several bug fixes and enhancement features.

Major new features

Tracker Data Entry Improvements

Data entry in the tracker screen is now buffered, requiring an ENTER keystroke to com-
mit changes, or SHIFT-ENTER to insert the value. All other navigation keystrokes will
abandon data entry. The increment / decrement keystrokes (] and [), as well as the
negate keystroke (-) function immediately if not in data entry mode, but modify the
currently buffered value in edit mode (again, requiring a commit).

Turtle Operator

The Turtle operator allows 2-dimensional access to the patterns as portrayed out in
Tracker mode. It uses new operators with the @ prefix. You can @MOVE X Y the turtle
relative to its current position, or set its direction in degrees with @DIR and its speed
with @SPEED and then execute a @STEP.

To access the value that the turtle operator points to, use @, which can also set the
value with an argument.

The turtle can be constrained on the tracker grid by setting its fence with @FX1, @FY1,
@FX2, and @FY2, or by using the shortcut operator @F x1 y1 x2 y2. When the turtle
reaches the fence, its behaviour is governed by its fence mode, where the turtle can
simply stop (@BUMP), wrap around to the other edge (@WRAP), or bounce off the fence
and change direction (@BOUNCE). Each of these can be set to 1 to enable that mode.

Setting @SCRIPT N will cause script N to execute whenever the turtle crosses the
boundary to another cell. This is different from simply calling @STEP; @SCRIPT N
because the turtle is not guaranteed to change cells on every step if it is moving slowly
enough.

Finally, the turtle can be displayed on the tracker screen with @SHOW 1, where it will
indicate the current cell by pointing to it from the right side with the < symbol.

New Mods: EVERY, SKIP, and OTHER, plus SYNC

These mods allow rhythmic division of control flow. EVERY X: executes the post-
command once per X at the Xth time the script is called. SKIP X: executes it every
time but the Xth. OTHER: will execute when the previous EVERY/SKIP command did
not.

Finally, SYNC X will set each EVERY and SKIP counter to X without modifying its divisor
value. Using a negative number will set it to that number of steps before the step.

14

Using SYNC -1 will cause each EVERY to execute on its next call, and each SKIP will
not execute.

Script Line “Commenting”

Individual lines in scripts can now be disabled from execution by highlighting the line
and pressing ALT-/. Disabled lines will appear dim. This status will persist through
save/load from flash, but will not carry over to scenes saved to USB drive.

New Operators

W [condition]: is a new mod that operates as a while loop. The BREAK operator
stops executing the current script BPM [bpm] returns the number of milliseconds
per beat in a given BPM, great for setting M. LAST [script] returns the number of
milliseconds since script was last called.

New Operator Behaviour

SCRIPT with no argument now returns the current script number. I is now local to its
corresponding L statement. IF/ELSE is now local to its script.

New keybindings

CTRL-1 throughCTRL-8 toggle the mute status for scripts 1 to 8 respectively. CTRL-9
toggles the METRO script. SHIFT-ENTER now inserts a line in Scene Write mode.

Bug fixes

Temporal recursion now possible by fixing delay allocation issue, e.g.: DEL 250:
SCRIPT SCRIPT KILL now clears TR outputs and stops METRO. SCENE will no longer
execute from the INIT script on initial scene load. AVG and Q.AVG now round up from
offsets of 0.5 and greater.

Breaking Changes

AsI is now local toL loops, it is no longer usable across scripts or as a general-purpose
variable. As IF/ELSE is now local to a script, scenes that relied on IF in one script and
ELSE in another will be functionally broken.

15

Version 2.0

Teletype version 2.0 represents a large rewrite of the Teletype code base. There are
many new language additions, some small breaking changes and a lot of under the
hood enhancements.

Major new features

Sub commands

Several commands on one line, separated by semicolons.

e.g. CV 1 N 60; TR.PULSE 1

See the section on “Sub commands” for more information.

Aliases

For example, use TR.P 1 instead of TR.PULSE 1, and use + 1 1, instead of ADD 1
1.

See the section on “Aliases” for more information.

PN versions of every P OP

There are now PN versions of every P OP. For example, instead of:

P.I 0
P.START 0
P.I 1
P.START 10

You can use:

PN.START 0 0
PN.START 1 10

TELEXi and TELEXo OPs

Lots of OPs have been added for interacting with the wonderful TELEXi input expander
and TELEXo output expander. See their respective sections in the documentation for
more information.

16

New keybindings

The function keys can now directly trigger a script.

The <tab> key is now used to cycle between live, edit and pattern modes, and there
are now easy access keys to directly jump to a mode.

Many new text editing keyboard shortcuts have been added.

See the “Modes” documentation for a listing of all the keybindings.

USB memory stick support

You can now save you scenes to USB memory stick at any time, and not just at boot
up. Just insert a USB memory stick to start the save and load process. Your edit scene
should not be effected.

It should also be significantly more reliable with a wider ranger of memory sticks.

WARNING: Please backup the contents of your USB stick before inserting it. Particu-
larly with a freshly flashed Teletype as you will end up overwriting all the saved scenes
with blank ones.

Other additions

• Limited script recursion now allowed (max recursion depth is 8) including self
recursion.

• Metro scripts limited to 25ms, but new M! op to set it as low as 2ms (at your own
risk), see “Metronome” OP section for more.

Breaking changes

• Removed the need for the II OP.
For example, II MP.PRESET 1 will become just MP.PRESET 1.

• Merge MUTE and UNMUTE OPs to MUTE x / MUTE x y.
See the documentation for MUTE for more information.

• Remove unused Meadowphysics OPs.
Removed: MP.SYNC, MP.MUTE, MP.UNMUTE, MP.FREEZE, MP.UNFREEZE.

• Rename Ansible Meadowphysics OPs to start with ME.
This was done to avoid conflicts with the Meadowphysics OPs.

WARNING: If you restore your scripts from a USB memory stick, please manually fix
any changes first. Alternatively, incorrect commands (due to the above changes) will
be skipped when imported, please re-add them.

17

Known issues

Visual glitches

The cause of these is well understood, and they are essentially harmless. Changing
modes with the <tab> key will force the screen to redraw. A fix is coming in version
2.1.

18

Quickstart

Panel

Figure 1: Panel Overlay

The keyboard is attached to the front panel, for typing commands. The commands can
be executed immediately in LIVE mode or assigned to one of the eight trigger inputs in
EDIT mode. The knob and in jack can be used to set and replace values.

LIVE mode

Teletype starts up in LIVE mode. You’ll see a friendly > prompt, where commands are
entered. The command:

19

TR.TOG A

will toggle trigger A after pressing enter. Consider:

CV 1 V 5
CV 2 N 7
CV 1 0

Here the first command sets CV 1 to 5 volts. The second command sets CV 2 to note
7 (which is 7 semitones up). The last command sets CV 1 back to 0.

Data flows from right to left, so it becomes possible to do this:

CV 1 N RAND 12

Here a random note between 0 and 12 is set to CV 1.

We can change the behavior of a command with a PRE such as DEL:

DEL 500 : TR.TOG A

TR.TOG A will be delayed by 500ms upon execution.

A helpful display line appears above the command line in dim font. Here any entered
commands will return their numerical value if they have one.

SCRIPTS, or several lines of commands, can be assigned to trigger inputs. This is when
things get musically interesting. To edit each script, we shift into EDIT mode.

LIVE mode icons

Four small icons are displayed in LIVE mode to give some important feedback about
the state of Teletype. These icons will be brightly lit when the above is true, else will
remain dim. They are, from left to right:

• Slew: CV outputs are currently slewing to a new destination.
• Delay: Commands are in the delay queue to be executed in the future.
• Stack: Commands are presently on the stack waiting for execution.
• Metro: Metro is currently active and the Metro script is not empty.

EDIT mode

Toggle between EDIT and LIVE modes by pushing TAB.

The prompt now indicates the script you’re currently editing:

20

• 1-8 indicates the script associated with corresponding trigger
• M is for the internal metronome
• I is the init script, which is executed upon scene recall

Script 1 will be executed when trigger input 1 (top left jack on the panel) receives a
low-to-high voltage transition (trigger, or front edge of a gate). Consider the following
as script 1:

1:

TR.TOG A

Now when input 1 receives a trigger, TR.TOG A is executed, which toggles the state of
output trigger A.

Scripts can have multiple lines:

1:

TR.TOG A
CV 1 V RAND 4

Now each time input 1 receives a trigger, CV 1 is set to a random volt between 0 and 4,
in addition to output trigger A being toggled.

Metronome

The M script is driven by an internal metronome, so no external trigger is required. By
default the metronome interval is 1000ms. You can change this readily (for example,
in LIVE mode):

M 500

The metronome interval is now 500ms. You can disable/enable the metronome entirely
with M.ACT:

M.ACT 0

Now the metronome is off, and the M script will not be executed. Set M.ACT to 1 to
re-enable.

21

Patterns

Patterns facilitate musical data manipulation– lists of numbers that can be used as
sequences, chord sets, rhythms, or whatever you choose. Pattern memory consists
four banks of 64 steps. Functions are provided for a variety of pattern creation, trans-
formation, and playback. The most basic method of creating a pattern is by directly
adding numbers to the sequence:

P.PUSH 5
P.PUSH 11
P.PUSH 9
P.PUSH 3

P.PUSH adds the provided value to the end of the list– patterns keep track of their
length, which can be read or modified with P.L. Now the pattern length is 4, and the
list looks something like:

5, 11, 9, 3

Patterns also have an index P.I, which could be considered a playhead. P.NEXT will
advance the index by one, and return the value stored at the new index. If the playhead
hits the end of the list, it will either wrap to the beginning (if P.WRAP is set to 1, which
it is by default) or simply continue reading at the final position.

So, this script on input 1 would work well:

1:

CV 1 N P.NEXT

Each time input 1 is triggered, the pattern moves forward one then CV 1 is set to the
note value of the pattern at the new index. This is a basic looped sequence. We could
add further control on script 2:

2:

P.I 0

Since P.I is the playhead, trigger input 2 will reset the playhead back to zero. It won’t
change the CV, as that only happens when script 1 is triggered.

We can change a value within the pattern directly:

P 0 12

This changes index 0 to 12 (it was previously 5), so now we have 12, 11, 9, 3.

We’ve been working with pattern 0 up to this point. There are four pattern banks, and
we can switch banks this way:

22

P.N 1

Now we’re on pattern bank 1. P.NEXT, P.PUSH, P, (and several more commands) all
reference the current pattern bank. Each pattern maintains its own play index, wrap
parameter, length, etc.
We can directly access and change any pattern value with the command PN:

PN 3 0 22

Here the first argument (3) is the bank, second (0) is the index, and last is the new value
(22). You could do this by doing P.N 3 then P 0 22 but there are cases where a direct
read/write is needed in your patch.
Check the Command Set section below for more pattern commands.
Patterns are stored in flash with each scene!

TRACKER mode

Editing patterns with scripts or from the command line isn’t always ergonomic. When
you’d like to visually edit patterns, TRACKER mode is the way.
The TAB key cycles between LIVE, EDIT and TRACKER mode. You can also get directly
to TRACKER mode by pressing the NUM LOCK key. TRACKER mode is the one with 4
columns of numbers on the Teletype screen.
The current pattern memory is displayed in these columns. Use the arrow keys to nav-
igate. Holding ALT will jump by pages.
The edit position is indicated by the brightest number. Very dim numbers indicate they
are outside the pattern length.
Use the square bracket keys [and] to decrease/increase the values. Backspace sets
the value to 0. Entering numbers will overwrite a new value. You can cut/copy/paste
with ALT-X-C-V.
Check the Keys section for a complete list of tracker shortcuts.

Scenes

A SCENE is a complete set of scripts and patterns. Stored in flash, scenes can be saved
between sessions. Many scenes ship as examples. On startup, the last used scene is
loaded by Teletype.
Access the SCENE menu using ESCAPE. The bracket keys ([and]) navigate between
the scenes. Use the up/down arrow keys to read the scene text. This text will/should
describe what the scene does generally along with input/output functions. ENTER will
load the selected scene, or ESCAPE to abort.
To save a scene, hold ALT while pushing ESCAPE. Use the brackets to select the des-
tination save position. Edit the text section as usual– you can scroll down for many
lines. The top line is the name of the scene. ALT-ENTER will save the scene to flash.

23

Keyboard-less Scene Recall

To facilitate performance without the need for the keyboard, scenes can be recalled
directly from the module’s front panel.

• Press the SCENE RECALL button next to the USB jack on the panel.
• Use the PARAM knob to highlight your desired preset.
• Hold the SCENE RECALL button for 1 second to load the selected scene.

Init Script

The INIT script (represented as I) is executed when a preset is recalled. This is a
good place to set initial values of variables if needed, like metro time M or time enable
TIME.ACT for example.

USB Backup

Teletype’s scenes can be saved and loaded from a USB flash drive. When a flash drive
is inserted, Teletype will recognize it and go into disk mode. First, all 32 scenes will
be written to text files on the drive with names of the form tt##s.txt. For example,
scene 5 will be saved to tt05s.txt. The screen will display WRITE....... as this
is done.

Once complete, Teletype will attempt to read any files namedtt##.txt and load them
into memory. For example, a file named tt13.txt would be loaded as scene 13 on
Teletype. The screen will displayREAD...... Once this process is complete, Teletype
will return to LIVE mode and the drive can be safely removed.

For best results, use an FAT-formatted USB flash drive. If Teletype does not recognize
a disk that is inserted within a few seconds, it may be best to try another.

An example of possible scenes to load, as well as the set of factory default scenes,
can be found at the Teletype Codex20.

Commands

Nomenclature

• SCRIPT – multiple commands
• COMMAND – a series (one line) of words
• WORD – a text string separated by a space: value, operator, variable, mod
• VALUE – a number

20https://github.com/monome-community/teletype-codex

24

https://github.com/monome-community/teletype-codex

• OPERATOR – a function, may need value(s) as argument(s), may return value
• VARIABLE – named memory storage
• MOD – condition/rule that applies to rest of the command, e.g.: del, prob, if, s

Syntax

Teletype uses prefix notation. Evaluation happens from right to left.

The left value gets assignment (set). Here, temp variable X is assigned zero:

X 0

Temp variable Y is assigned to the value of X:

Y X

X is being read (get X), and this value is being used to set Y.

Instead of numbers or variables, we can use operators to perform more complex be-
havior:

X TOSS

TOSS returns a random state, either 0 or 1 on each call.

Some operators require several arguments:

X ADD 1 2

Here ADD needs two arguments, and gets 1 and 2. X is assigned the result of ADD, so
X is now 3.

If a value is returned at the end of a command, it is printed as a MESSAGE. This is
visible in LIVE mode just above the command prompt. (In the examples below ignore
the // comments).

8 // prints 8
X 4
X // prints 4
ADD 8 32 // prints 40

Many parameters are indexed, such as CV and TR. This means that CV and TR have
multiple values (in this case, each has four.) We pass an extra argument to specify
which index we want to read or write.

CV 1 0

25

Here CV 1 is set to 0. You can leave off the 0 to print the value.

CV 1 // prints value of CV 1

Or, this works too:

X CV 1 // set X to current value of CV 1

Here is an example of using an operator RAND to set a random voltage:

CV 1 V RAND 4

First a random value between 0 and 3 is generated. The result is turned into a volt with
a table lookup, and the final value is assigned to CV 1.

The order of the arguments is important, of course. Consider:

CV RRAND 1 4 0

RRAND uses two arguments, 1 and 4, returning a value between these two. This com-
mand, then, chooses a random CV output (1-4) to set to 0. This might seem confusing,
so it’s possible to clarify it by pulling it apart:

X RRAND 1 4
CV X 0

Here we use X as a temp step before setting the final CV.

With some practice it becomes easier to combine many functions into the same com-
mand.

Furthermore, you can use a semicolon to include multiple commands on the same line:

X RRAND 1 4; CV X 0

This is particularly useful in INIT scripts where you may want to initialize several values
at once:

A 66; X 101; TR.TIME 1 20;

Continuing

Don’t forget to checkout the Teletype Studies21 for an example-driven guide to the lan-
guage.

21https://monome.org/docs/modular/teletype/studies-1

26

https://monome.org/docs/modular/teletype/studies-1

Keys

Global key bindings

These bindings work everywhere.

Key Action

<tab> change modes, live to edit to pattern and back
<esc> preset read mode, or return to last mode
alt-<esc> preset write mode
win-<esc> clear delays, stack and slews
shift-alt-? / alt-h help text, or return to last mode
<F1> to <F8> run corresponding script
<F9> run metro script
<F10> run init script
alt-<F1> to alt-<F8> edit corresponding script
alt-<F9> edit metro script
alt-<F10> edit init script
ctrl-<F1> to ctrl-<F8> mute/unmute corresponding script
ctrl-<F9> enable/disable metro script
<numpad-1> to <numpad-8> run corresponding script
<num lock> / <F11> jump to pattern mode
<print screen> / <F12> jump to live mode

Text editing

These bindings work when entering text or code.

In most cases, the clipboard is shared between live, edit and the 2 preset modes.

Key Action

<left> / ctrl-b move cursor left
<right> / ctrl-f move cursor right
ctrl-<left> / alt-b move left by one word
ctrl-<right> / alt-f move right by one word

27

Key Action

<home> / ctrl-a move to beginning of line
<end> / ctrl-e move to end of line
<backspace> / ctrl-h backwards delete one character
<delete> / ctrl-d forwards delete one character
shift-<backspace> / ctrl-u delete from cursor to beginning
shift-<delete> / ctrl-k delete from cursor to end
alt-<backspace> / ctrl-w delete from cursor to beginning of word
alt-d delete from cursor to end of word
ctrl-x / alt-x cut to clipboard
ctrl-c / alt-c copy to clipboard
ctrl-v / alt-v paste to clipboard

Live mode

Key Action

<down> / C-n history next
<up> / C-p history previous
<enter> execute command
~ toggle variables
[/] switch to edit mode
alt-g toggle grid visualizer
shift-d live dashboard
alt-<arrows> move grid cursor
alt-shift-<arrows> select grid area
alt-<space> emulate grid press
alt-/ switch grid pages
alt-\ toggle grid control view
alt-<prt sc> insert grid x/y/w/h

In full grid visualizer mode pressing alt is not required.

Edit mode

In edit mode multiple lines can be selected and used with the clipboard.

28

Key Action

<down> / C-n line down
<up> / C-p line up
[previous script
] next script
<enter> enter command
shift-<enter> insert command
alt-/ toggle line comment
shift-<up> expand selection up
shift-<down> expand selection down
alt-<delete> delete selection
alt-<up> move selection up
alt-<down> move selection down
ctrl-z undo (3 levels)

Tracker mode

The tracker mode clipboard is independent of text and code clipboard.

Key Action

<down> move down
alt-<down> move a page down
<up> move up
alt-<up> move a page up
<left> move left
alt-<left> move to the very left
<right> move right
alt-<right> move to the very right
[decrement by 1
] increment by 1
alt-[decrement by 1 semitone
alt-] increment by 1 semitone
ctrl-[decrement by 7 semitones
ctrl-] increment by 7 semitones
shift-[decrement by 12 semitones
shift-] increment by 12 semitones
alt-<0-9> increment by <0-9> semitones (0=10, 1=11)

29

Key Action

shift-alt-<0-
9>

decrement by <0-9> semitones (0=10, 1=11)

<backspace> delete a digit
shift-
<backspace>

delete an entry, shift numbers up

<enter> commit edit (increase length if cursor in position after last entry)
shift-<enter> commit edit, then duplicate entry and shift downwards (increase

length as <enter>)
alt-x cut value (n.b. ctrl-x not supported)
alt-c copy value (n.b. ctrl-c not supported)
alt-v paste value (n.b. ctrl-v not supported)
shift-alt-v insert value
shift-l set length to current position
alt-l go to current length entry
shift-s set start to current position
alt-s go to start entry
shift-e set end to current position
alt-e go to end entry
- negate value
<space> toggle non-zero to zero, and zero to 1
0 to 9 numeric entry
shift-2 (@) toggle turtle display marker (<)
ctrl-alt insert knob value scaled to 0..31
ctrl-shift insert knob value scaled to 0..1023

Preset read mode

Key Action

<down> / C-n line down
<up> / C-p line up
<left> / [preset down
<right> /] preset up
<enter> load preset

30

Preset write mode

Key Action

<down> / C-n line down
<up> / C-p line up
[preset down
] preset up
<enter> enter text
shift-<enter> insert text
alt-<enter> save preset

Help mode

Key Action

<down> / C-n line down
<up> / C-p line up
<left> / [previous page
<right> /] next page
C-f / C-s search forward
C-r search backward

31

OPs and MODs

32

Variables

General purpose temp vars: X, Y, Z, and T.

T typically used for time values, but can be used freely.

A-D are assigned 1-4 by default (as a convenience for TR labeling, but TR can be ad-
dressed with simply 1-4). All may be overwritten and used freely.

OP OP (set) (aliases) Description

A A x get / set the variable A, default 1
B B x get / set the variable B, default 2
C C x get / set the variable C, default 3
D D x get / set the variable D, default 4
FLIP FLIP x returns the opposite of its

previous state (0 or 1) on each
read (also settable)

I I x get / set the per-script variable
I. See also L: in control flow

J J x get / set the per-script variable J
K K x get / set the per-script variable K
O O x auto-increments after each

access, can be set, starting
value 0

O.INC O.INC x how much to increment O by on
each invocation, default 1

O.MIN O.MIN x the lower bound for O, default 0
O.MAX O.MAX x the upper bound for O, default 63
O.WRAP O.WRAP x should O wrap when it reaches

its bounds, default 1
T T x get / set the variable T, typically

used for time, default 0
TIME TIME x timer value, counts up in ms.,

wraps after 32s, can be set
TIME.ACT TIME.ACT x enable or disable timer counting,

default 1
LAST x get value in milliseconds since

last script run time
X X x get / set the variable X, default 0
Y Y x get / set the variable Y, default 0
Z Z x get / set the variable Z, default 0

33

I

• I / I x

Get / set the variable I. This variable is overwritten by L, but can be used freely outside
an L loop. Each script gets its own I variable, so if you call a script from another script’s
loop you can still use and modify I without affecting the calling loop. In this scenario
the script getting called will have its I value initialized with the calling loop’s current I
value.

J

• J / J x

get / set the variable J, each script gets its own J variable, so if you call a script from
another script you can still use and modify J without affecting the calling script.

K

• K / K x

get / set the variable K, each script gets its own K variable, so if you call a script from
another script you can still use and modify K without affecting the calling script.

O

• O / O x

Auto-increments by O.INC after each access. The initial value is 0. The lower and up-
per bounds can be set by O.MIN (default 0) and O.MAX (default 63). O.WRAP controls
if the value wraps when it reaches a bound (default is 1).
Example:

O => 0
O => 1
X O
X => 2
O.INC 2
O => 3 (O increments after it's accessed)
O => 5
O.INC -2
O 2
O => 2
O => 0
O => 63
O => 61

34

LAST

• LAST x

Gets the number of milliseconds since the given script was run, where M is script 9 and
I is script 10. From the live mode, LAST SCRIPT gives the time elapsed since last run
of I script.

For example, one-line tap tempo:

M LAST SCRIPT

Running this script twice will set the metronome to be the time between runs.

35

Hardware

The Teletype trigger inputs are numbered 1-8, the CV and trigger outputs 1-4. See the
Ansible documentation for details of the Ansible output numbering when in Teletype
mode.

OP OP (set) (aliases) Description

CV x CV x y CV target value
CV.OFF x CV.OFF x y CV offset added to output
CV.SET x y Set CV value, ignoring slew
CV.GET x Get current CV value
CV.SLEW x CV.SLEW x y Get/set the CV slew time in ms
V x converts a voltage to a value

usable by the CV outputs (x
between 0 and 10)

VV x converts a voltage to a value
usable by the CV outputs (x
between 0 and 1000, 100
represents 1V)

IN Get the value of IN jack
(0-16383)

IN.SCALE min max Set static scaling of the IN CV to
between min and max.

PARAM PRM Get the value of PARAM knob
(0-16383)

PARAM.SCALE min
max

Set static scaling of the PARAM
knob to between min and max.

TR x TR x y Set trigger output x to y (0-1)
TR.PULSE x TR.P Pulse trigger output x
TR.TIME x TR.TIME x y Set the pulse time of trigger x to

y ms
TR.TOG x Flip the state of trigger output x
TR.POL x TR.POL x y Set polarity of trigger output x to

y (0-1)
MUTE x MUTE x y Disable trigger input x
STATE x Read the current state of input x
LIVE.OFF LIVE.O Show the default live mode

screen
LIVE.VARS LIVE.V Show variables in live mode
LIVE.GRID LIVE.G Show grid visualizer in live mode
LIVE.DASH x LIVE.D Show the dashboard with index

x

36

OP OP (set) (aliases) Description

PRINT x PRINT x y PRT Print a value on a live mode
dashboard or get the printed
value

CV

• CV x / CV x y

Get the value of CV associated with output x, or set the CV output of x to y.

CV.OFF

• CV.OFF x / CV.OFF x y

Get the value of the offset added to the CV value at output x. The offset is added at
the final stage. Set the value of the offset added to the CV value at output x to y.

CV.SET

• CV.SET x y

Set the CV value at output x bypassing any slew settings.

CV.GET

• CV.GET x

Get the current CV value at output x with slew and offset applied.

CV.SLEW

• CV.SLEW x / CV.SLEW x y

Get the slew time in ms associated with CV output x. Set the slew time associated
with CV output x to y ms.

37

IN

• IN

Get the value of the IN jack. This returns a valuue in the range 0-16383.

PARAM

• PARAM
• alias: PRM

Get the value of the PARAM knob. This returns a valuue in the range 0-16383.

TR

• TR x / TR x y

Get the current state of trigger output x. Set the state of trigger output x to y (0-1).

TR.PULSE

• TR.PULSE x
• alias: TR.P

Pulse trigger output x.

TR.TIME

• TR.TIME x / TR.TIME x y

Get the pulse time of trigger output x. Set the pulse time of trigger output x to yms.

TR.TOG

• TR.TOG x

Flip the state of trigger output x.

38

TR.POL

• TR.POL x / TR.POL x y

Get the current polarity of trigger output x. Set the polarity of trigger output x to y (0-1).
When TR.POL = 1, the pulse is 0 to 1 then back to 0. When TR.POL = 0, the inverse is
true, 1 to 0 to 1.

MUTE

• MUTE x / MUTE x y

Mute the trigger input on x (1-8) when y is non-zero.

STATE

• STATE x

Read the current state of trigger input x (0=low, 1=high).

LIVE.DASH

• LIVE.DASH x
• alias: LIVE.D

This allows you to show custom text and print values on the live mode screen. To create
a dashboard, simply edit the scene description. You can define multiple dashboards
by separating them with ===, and you can select them by specifying the dashboard
number as the op parameter.

You can also print up to 16 values using PRINT op. To create a placeholder for a value,
place %## where you want the number to be, where ## is a value index between 1 and
16. Please note: if you define multiple placeholders for the same value, only the last
one will be used, and the rest will be treated as plain text. By default, values are printed
in decimal format, but you can also use hex, binary and reversed binary formats by
using %X##, %B## and %R## placeholders respectively.

An example of a dashboard:

THIS IS A DASHBOARD

CURRENT METRO RATE IS: %1

You can use this dashboard by entering the above in a scene description, placing
LIVE.DASH 1 in the init script and placing PRINT 1 M in the metro script.

39

PRINT

• PRINT x / PRINT x y
• alias: PRT

This op allows you to display up to 16 values on a live mode dashboard and should be
used in conjunction with LIVE.DASH op. See LIVE.DASH description for information
on how to use it. You can also use this op to store up to 16 additional values.

40

Pitch

Mathematical calcuations and tables helpful for musical pitch.

OP OP (set) (aliases) Description

HZ x converts 1V/OCT value x to
Hz/Volt value, useful for
controlling non-euro synths like
Korg MS-20

JI x y just intonation helper, precision
ratio divider normalised to 1V

N x converts an equal temperament
note number to a value usable
by the CV outputs (x in the range
-127 to 127)

N.S r s d Note Scale operator, r is the root
note (0-127), s is the scale
(0-8) and d is the degree (1-7),
returns a value from the N table.

N.C r c d Note Chord operator, r is the
root note (0-127), c is the chord
(0-12) and d is the degree
(0-3), returns a value from the N
table.

N.CS r s d c Note Chord Scale operator, r is
the root note (0-127), s is the
scale (0-8), d is the scale
degree (1-7) and c is the chord
component (0-3), returns a
value from the N table.

N.B d N.B r s get degree d of scale/set scale
root to r, scale to s, s is either
bit mask (s >= 1) or scale preset
(s < 1)

N.BX i d N.BX i r s multi-index version of N.B, scale
at i (index) 0 is shared with N.B

VN x converts 1V/OCT value x to an
equal temperament note number

QT.B x quantize 1V/OCT signal x to
scale defined by N.B

QT.BX i x quantize 1V/OCT signal x to
scale defined by N.BX in scale
index i

QT.S x r s quantize 1V/OCT signal x to
scale s (0-8, reference N.S
scales) with root 1V/OCT pitch r

41

OP OP (set) (aliases) Description

QT.CS x r s d c quantize 1V/OCT signal x to
chord c (1-7) from scale s (0-8,
reference N.S scales) at degree
d (1-7) with root 1V/OCT pitch r

N

• N x

The N OP converts an equal temperament note number to a value usable by the CV
outputs.

Examples:

CV 1 N 60 => set CV 1 to middle C, i.e. 5V
CV 1 N RAND 24 => set CV 1 to a random note from the lowest 2 octaves

N.S

• N.S r s d

The N.S OP lets you retrieve N table values according to traditional western scales. s
and d wrap to their ranges automatically and support negative indexing.

Scales - 0 = Major - 1 = Natural Minor - 2 = Harmonic Minor - 3 = Melodic Minor - 4 =
Dorian - 5 = Phrygian - 6 = Lydian - 7 = Mixolydian - 8 = Locrian

N.C

• N.C r c d

The N.C OP lets you retrieve N table values according to traditional western chords. c
and d wrap to their ranges automatically and support negative indexing.

Chords - 0 = Major 7th {0, 4, 7, 11} - 1 = Minor 7th {0, 3, 7, 10} - 2 = Dominant
7th {0, 4, 7, 10} - 3 = Diminished 7th {0, 3, 6, 9} - 4 = Augmented 7th {0,
4, 8, 10} - 5 = Dominant 7b5 {0, 4, 6, 10} - 6 = Minor 7b5 {0, 3, 6, 10} - 7
= Major 7#5 {0, 4, 8, 11} - 8 = Minor Major 7th {0, 3, 7, 11} - 9 = Diminished
Major 7th {0, 3, 6, 11} - 10 = Major 6th {0, 4, 7, 9} - 11 = Minor 6th {0, 3,
7, 9} - 12 = 7sus4 {0, 5, 7, 10}

42

N.CS

• N.CS r s d c

TheN.CSOP lets you retrieveN table values according to traditional western scales and
chords. s, c and d wrap to their ranges automatically and support negative indexing.

Chord Scales - Refer to chord indices in N.C OP - 0 = Major {0, 1, 1, 0, 2, 1,
6} - 1 = Natural Minor {1, 6, 0, 1, 1, 0, 2} - 2 = Harmonic Minor {8, 6, 7,
1, 2, 0, 3} - 3 = Melodic Minor {8, 1, 7, 2, 2, 6, 6} - 4 = Dorian {1, 1,
0, 2, 1, 6, 0} - 5 = Phrygian {1, 0, 2, 1, 6, 0, 1} - 6 = Lydian {0, 2, 1,
6, 0, 1, 1} - 7 = Mixolydian {2, 1, 6, 0, 1, 1, 0} - 8 = Locrian {6, 0, 1,
1, 0, 2, 1}

N.B

• N.B d / N.B r s

Converts a degree in a user-defined equal temperament scale to a value usable by the
CV outputs. Default values of r and s are 0 and R101011010101, corresponding to
C-major. To make it easier to generate bit-masks in code, LSB (bit 0) represent the first
note in the octave. To avoid having to mirror scales in our heads when entering them
by hand, we use R... (reverse binary) instead of B... (binary).

The bit-masks uses the 12 lower bits.

Note that N.B is using scale at index 0 as used by N.BX ,so N.B and N.BX 0 are equiva-
lent.

Examples:

CV 1 N.B 1 ==> set CV 1 to 1st degree of default scale
(C, value corresponding to N 0)

N.B 0 R101011010101 ==> set scale to C-major (default)
CV 1 N.B 1 ==> set CV 1 get 1st degree of scale

(C, value corresponding to N 0)
N.B 2 R101011010101 ==> set scale to D-major
CV 1 N.B 3 ==> set CV 1 to 3rd degree of scale

(F#, value corresponding to N 6)
N.B 3 R100101010010 ==> set scale to Eb-minor pentatonic
CV 1 N.B 2 ==> set CV 1 to 2nd degree of scale

(Gb, value corresponding to N 6)
N.B 5 -3 ==> set scale to F-lydian using preset

Values of s less than 1 sets the bit mask to a preset scale:

0: Ionian (major)
-1: Dorian

43

-2: Phrygian
-3: Lydian
-4: Mixolydian
-5: Aeolean (natural minor)
-6: Locrian
-7: Melodic minor
-8: Harmonic minor
-9: Major pentatonic
-10: Minor pentatonic
-11 Whole note (1st Messiaen mode)
-12 Octatonic (half-whole, 2nd Messiaen mode)
-13 Octatonic (whole-half)
-14 3rd Messiaen mode
-15 4th Messiaen mode
-16 5th Messiaen mode
-17 6th Messiaen mode
-18 7th Messiaen mode
-19 Augmented

N.BX

• N.BX i d / N.BX i r s

Multi-index version of N.B. Index i in the range 0-15, allows working with 16 indepen-
dent scales. Scale at i 0 is shared with N.B.

Examples:

N.BX 0 0 R101011010101 ==> set scale at index 0 to C-
major (default)
CV 1 N.BX 0 1 ==> set CV 1 to 1st degree of scale

(C, value corresponding to N 0)
N.BX 1 3 R100101010010 ==> set scale at index 1 to Eb-
minor pentatonic
CV 1 N.BX 1 2 ==> set CV 1 to 2nd degree of scale

(Gb, value corresponding to N 6)
N.BX 2 5 -3 ==> set scale at index 2 to F-
lydian using preset

QT.CS

• QT.CS x r s d c

Quantize 1V/OCT signal x to chord c (1-7) from scale s (0-8, reference N.S scales) at
degree d (1-7) with root 1V/OCT pitch r.

Chords (1-7) - 1 = Tonic - 2 = Third - 3 = Triad - 4 = Seventh - etc.

44

Rhythm

Mathematical calculations and tables helpful for rhythmic decisions.

OP OP (set) (aliases) Description

BPM x milliseconds per beat in BPM x
DR.P b p s Drum pattern helper, b is the

drum bank (0-4), p is the pattern
(0-215) and step is the step
number (0-15), returns 0 or 1

DR.T b p q l s Tresillo helper, b is the drum
bank (0-4), p is first pattern
(0-215), q is the second pattern
(0-215), l is length (1-64), and
step is the step number
(0-length-1), returns 0 or 1

DR.V p s Velocity helper. p is the pattern
(0-19). s is the step number
(0-15)

ER f l i Euclidean rhythm, f is fill (1-32),
l is length (1-32) and i is step
(any value), returns 0 or 1

NR p m f s Numeric Repeater, p is prime
pattern (0-31), m is & mask
(0-3), f is variation factor
(0-16) and s is step (0-15),
returns 0 or 1

DR.P

• DR.P b p s

The drum helper uses preset drum patterns to give 16-step gate patterns. Gates wrap
after step 16. Bank 0 is a set of pseudo random gates increasing in density at higher
numbered patterns, where pattern 0 is empty, and pattern 215 is 1s. Bank 1 is bass
drum patterns. Bank 2 is snare drum patterns. Bank 3 is closed hi-hats. Bank 4 is open
hi-hits and in some cases cymbals. Bank 1-4 patterns are related to each other (bank 1
pattern 1’s bass drum pattern fits bank 2 pattern 1’s snare drum pattern). The patterns
are from Paul Wenzel’s “Pocket Operations” book22.

DR.T

• DR.T b p q l s
22https://shittyrecording.studio/

45

https://shittyrecording.studio/

The Tresillo helper uses the preset drum patterns described in the drum pattern help
function in a 3, 3, 2 rythmic formation. In the tresillo, pattern 1 will be repeated twice for
a number of steps determined by the overall length of the pattern. A pattern of length
8 will play the first three steps of your selected pattern 1 twice, and the first two steps
of pattern 2 once. A pattern length of 16 will play the first six steps of selected pattern
1 twice, and the first four steps of pattern 2 once. And so on. The max length is 64.
Length will be rounded down to the nearest multiple of 8. The step number wraps at
the given length.

DR.V

• DR.V p s

The velocity helper gives velocity values (0-16383) at each step. The values are in-
tended to be used for drum hit velocities. There are 16 steps, which wrap around.
Divide by 129 to convert to midi cc values.

ER

• ER f l i

Euclidean rhythm helper, as described by Godfried Toussaint in his 2005 paper “The
Euclidean Algorithm Generates Traditional Musical Rhythms”2324. From the abstract:

• f is fill (1-32) and should be less then or equal to length
• l is length (1-32)
• i is the step index, and will work with negative as well as positive numbers

If you wish to add rotation as well, use the following form:

ER f l SUB i r

where r is the number of step of forward rotation you want.

For more info, see the post on samdoshi.com25

23http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf
24Toussaint, G. T. (2005, July). The Euclidean algorithm generates traditional musical rhythms. In

Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science (pp. 47-56).
25http://samdoshi.com/post/2016/03/teletype-euclidean/

46

http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf
http://samdoshi.com/post/2016/03/teletype-euclidean/

NR

• NR p m f s

Numeric Repeater is similar to ER, except it generates patterns using the binary arith-
metic process found in “Noise Engineering’s Numeric Repetitor”26. From the descrip-
tion:

Numeric Repetitor is a rhythmic gate generator based on binary arithmetic. A core
pattern forms the basis and variation is achieved by treating this pattern as a binary
number and multiplying it by another. NR contains 32 prime rhythms derived by exam-
ining all possible rhythms and weeding out bad ones via heuristic.

All parameters wrap around their specified ranges automatically and support negative
indexing.

Masks - 0 is no mask - 1 is 0x0F0F - 2 is 0xF003 - 3 is 0x1F0

For further detail “see the manual”27.

26https://www.noiseengineering.us/shop/numeric-repetitor
27https://static1.squarespace.com/static/58c709192e69cf2422026fa6/t/

5e6041ad4cbc0979d6d793f2/1583366574430/NR_manual.pdf

47

https://www.noiseengineering.us/shop/numeric-repetitor
https://static1.squarespace.com/static/58c709192e69cf2422026fa6/t/5e6041ad4cbc0979d6d793f2/1583366574430/NR_manual.pdf
https://static1.squarespace.com/static/58c709192e69cf2422026fa6/t/5e6041ad4cbc0979d6d793f2/1583366574430/NR_manual.pdf

Metronome

An internal metronome executes the M script at a specified rate (in ms). By default
the metronome is enabled (M.ACT 1) and set to 1000ms (M 1000). The metro can
be set as fast as 25ms (M 25). An additional M! op allows for setting the metronome
to experimental rates as high as 2ms (M! 2). WARNING: when using a large number
of i2c commands in the M script at metro speeds beyond the 25ms teletype stability
issues can occur.

Access the M script directly with alt-<F10> or run the script once using <F10>.

OP OP (set) (aliases) Description

M M x get/set metronome interval to x (in ms), default 1000, minimum value 25
M! M! x get/set metronome to experimental interval x (in ms), minimum value 2
M.ACT M.ACT x get/set metronome activation to x (0/1), default 1 (enabled)
M.RESET hard reset metronome count without triggering

48

Randomness

OP OP (set) (aliases) Description

RAND x RND generate a random number
between 0 and x inclusive

RRAND x y RRND generate a random number
between x and y inclusive

TOSS randomly return 0 or 1
R R x get a random number/set

R.MIN and R.MAX to same
value x (effectively allowing R to
be used as a global variable)

R.MIN x set the lower end of the range
from -32768 – 32767, default: 0

R.MAX x set the upper end of the range
from -32768 – 32767, default:
16383

CHAOS x get next value from chaos
generator, or set the current
value

CHAOS.R x get or set the R parameter for
the CHAOS generator

CHAOS.ALG x get or set the algorithm for the
CHAOS generator. 0 = LOGISTIC,
1 = CUBIC, 2 = HENON, 3 =
CELLULAR

DRUNK DRUNK x changes by -1, 0, or 1 upon
each read saving its state,
setting will give it a new value
for the next read

DRUNK.MIN DRUNK.MIN x set the lower bound for DRUNK,
default 0

DRUNK.MAX DRUNK.MAX x set the upper bound for DRUNK,
default 255

DRUNK.WRAP DRUNK.WRAP x should DRUNK wrap around
when it reaches it’s bounds,
default 0

SEED SEED x get / set the random number
generator seed for all SEED ops

RAND.SEED RAND.SEED x RAND.SD
, R.SD

get / set the random number
generator seed for R, RRAND, and
RAND ops

TOSS.SEED TOSS.SEED x TOSS.SD get / set the random number
generator seed for the TOSS op

49

OP OP (set) (aliases) Description

PROB.SEED PROB.SEED x PROB.SD get / set the random number
generator seed for the PROB
mod

DRUNK.SEED DRUNK.SEED x DRUNK.SDget / set the random number
generator seed for the DRUNK op

P.SEED P.SEED x P.SD get / set the random number
generator seed for the P.RND
and PN.RND ops

DRUNK

• DRUNK / DRUNK x

Changes by -1, 0, or 1 upon each read, saving its state. Setting DRUNKwill give it a new
value for the next read, and drunkedness will continue on from there with subsequent
reads.

Setting DRUNK.MIN and DRUNK.MAX controls the lower and upper bounds (inclusive)
that DRUNK can reach. DRUNK.WRAP controls whether the value can wrap around when
it reaches it’s bounds.

50

Control flow

OP OP (set) (aliases) Description

IF x: ... if x is not zero execute
command

ELIF x: ... if all previous IF / ELIF fail, and
x is not zero, execute command

ELSE: ... if all previous IF / ELIF fail,
excute command

L x y: ... run the command sequentially
with I values from x to y

W x: ... run the command while
condition x is true

EVERY x: ... EV run the command every x times
the command is called

SKIP x: ... run the command every time
except the xth time.

OTHER: ... runs the command when the
previous EVERY/SKIP did not
run its command.

SYNC x synchronizes all EVERY and
SKIP counters to offset x.

PROB x: ... potentially execute command
with probability x (0-100)

SCRIPT SCRIPT x $ get current script number, or
execute script x (1-10),
recursion allowed

SCRIPT.POL x SCRIPT.POL x p $.POL get script x trigger polarity, or set
polarity p (1 rising edge, 2
falling, 3 both)

$F script execute script as a function
$F1 script param execute script as a function with

1 parameter
$F2 script
param1 param2

execute script as a function with
2 parameters

$L script line execute script line
$L1 script line
param

execute script line as a function
with 1 parameter

$L2 script line
param1 param2

execute script line as a function
with 2 parameters

$S line execute script line within the
same script as a function

51

OP OP (set) (aliases) Description

$S1 line param execute script line within the
same script as a function with 1
parameter

$S2 line param1
param2

execute script line within the
same script as a function with 2
parameters

I1 get the first parameter when
executing a script as a function

I2 get the second parameter when
executing a script as a function

FR FR x get/set the return value when a
script is called as a function

SCENE SCENE x get the current scene number, or
load scene x (0-31)

SCENE.G x load scene x (0-31) without
loading grid control states

SCENE.P x load scene x (0-31) without
loading pattern state

KILL clears stack, clears delays,
cancels pulses, cancels slews,
disables metronome

BREAK BRK halts execution of the current
script

INIT clears all state data
INIT.CV x clears all parameters on CV

associated with output x
INIT.CV.ALL clears all parameters on all CV’s
INIT.DATA clears all data held in all

variables
INIT.P x clears pattern number x
INIT.P.ALL clears all patterns
INIT.SCENE loads a blank scene
INIT.SCRIPT x clear script number x
INIT.SCRIPT.ALL clear all scripts
INIT.TIME x clear time on trigger x
INIT.TR x clear all parameters on trigger x
INIT.TR.ALL clear all triggers

IF

• IF x: ...

52

If x is not zero execute command

Advanced IF / ELIF / ELSE usage

1. Intermediate statements always run

```text
SCRIPT 1:
IF 0: 0 => do nothing
TR.P 1 => always happens
ELSE: TR.P 2 => else branch runs because of the previous IF
```

2. ELSE without an IF

```text
SCRIPT 1:
ELSE: TR.P 1 => never runs, as there is no preceding IF
```

3. ELIF without an IF

```text
SCRIPT 1:
ELIF 1: TR.P 1 => never runs, as there is no preceding IF
```

4. Independent scripts

```text
SCRIPT 1:
IF 1: TR.P 1 => pulse output 1

SCRIPT 2:
ELSE: TR.P 2 => never runs regardless of what happens in script 1

(see example 2)
```

5. Dependent scripts

```text
SCRIPT 1:
IF 0: TR.P 1 => do nothing
SCRIPT 2 => will pulse output 2

SCRIPT 2:
ELSE: TR.P 2 => will not pulse output 2 if called directly,

but will if called from script 1
```

53

L

• L x y: ...

Run the command sequentially with I values from x to y.

For example:

L 1 4: TR.PULSE I => pulse outputs 1, 2, 3 and 4
L 4 1: TR.PULSE I => pulse outputs 4, 3, 2 and 1

W

• W x: ...

Runs the command while the condition x is true or the loop iterations exceed 10000.

For example, to find the first iterated power of 2 greater than 100:

A 2
W LT A 100: A * A A

A will be 256.

EVERY

• EVERY x: ...
• alias: EV

Runs the command every x times the line is executed. This is tracked on a per-line
basis, so each script can have 6 different “dividers”.

Here is a 1-script clock divider:

EVERY 2: TR.P 1
EVERY 4: TR.P 2
EVERY 8: TR.P 3
EVERY 16: TR.P 4

The numbers do not need to be evenly divisible by each other, so there is no problem
with:

EVERY 2: TR.P 1
EVERY 3: TR.P 2

54

SKIP

• SKIP x: ...

This is the corollary function to EVERY, essentially behaving as its exact opposite.

OTHER

• OTHER: ...

OTHER can be used to do somthing alternately with a preceding EVERY or SKIP com-
mand.

For example, here is a script that alternates between two triggers to make a four-on-
the-floor beat with hats between the beats:

EVERY 4: TR.P 1
OTHER: TR.P 2

You could add snares on beats 2 and 4 with:

SKIP 2: TR.P 3

SYNC

• SYNC x

Causes all of the EVERY and SYNC counters to synchronize their offsets, respecting
their individual divisor values.

Negative numbers will synchronize to to the divisor value, such that SYNC -1 causes
all every counters to be 1 number before their divisor, causing each EVERY to be true
on its next call, and each SKIP to be false.

SCRIPT

• SCRIPT / SCRIPT x
• alias: $

Execute script x (1-10, 9 = metro, 10 = init), recursion allowed.

There is a limit of 8 for the maximum number of nested calls to SCRIPT to stop infinite
loops from locking up the Teletype.

55

SCRIPT.POL

• SCRIPT.POL x / SCRIPT.POL x p
• alias: $.POL

Get or set the trigger polarity of script x, determining which trigger edges the script will
fire on.

1: rising edge (default) 2: falling edge 3: either edge

$F

• $F script

This op will execute a script similarly to SCRIPT op but it will also return a value, which
means you can define a script that calculates something and then use it in an expres-
sion. To set the return value, either place an expression at the end of the script without
assigning it to anything or assign it to the special function return variable FR. If you do
both, FR will be used, and if you don’t do either, zero will be returned.

Let’s say you update script 1 to return the square of X: * X X (which you could also
write as FR * X X). Then you can use it in an expression like this: A + A $F 1.

This op can save space if you have a calculation that is used in multiple places. Other
than returning a value, a function script isn’t different from a regular script and can per-
form other actions in addition to calculating something, including calling other scripts.
The same limit of 8 maximum nested calls applies here to prevent infinite loops.

If you need to be able to pass parameters into your function, use $F1 or $F2 ops.

$F1

• $F1 script param

Same as $F but you can also pass a single parameter into the function. Inside the
function script you can get the parameter using I1 op.

Let’s say you create a script that returns the square of the passed parameter: FR * I1
I1. You can then calculate the square of a number by executing $F1 value.

See the description of $F op for more details on executing scripts as functions.

$F2

• $F2 script param1 param2

56

Same as $F but you can also pass two parameters into a function. Inside the function
script you can get them using I1 and I2 ops.

Let’s say you create a script that returns a randomly selected value out of the two pro-
vided values: FR ? TOSS I1 I2. You can then save space by using $F2 1 X Y
instead of ? TOSS X Y. More importantly, you could use it in multiple places, and if
you later want to change the calculation to something else, you just need to update the
function script.

See the description of $F op for more details on executing scripts as functions.

$L

• $L script line

This op executes the specified script line. This allows you to use a script as a library
of sorts, where each line does something different, so you can use the same script
for multiple purposes. It also allows you to use free lines in a script to extend another
script.

This op behaves similarly to $F op in that it can be used as a function in an expression
by setting the return value with FR. Let’s say the first line in script 1 is this: FR * X X.
You can then get the square of X by executing $L 1 1.

If you want to use it as a function and you need to pass some parameters into it, use
$L1 / $L2 ops.

This op is also useful if you have a loop that doesn’t fit on one line - define the line later
in the script and then reference it in the loop:

#1
L 1 6: A + A $L 1 3
BREAK
SCALE X Y C D I

Don’t forget to add BREAK before the line so that it’s not executed when the whole script
is executed. If you use this technique, you can also save space by using $S op which
executes a line within the same script.

$L1

• $L1 script line param

Execute the specified script line as a function that takes 1 parameter. See the descrip-
tion of $L and $F1 ops for more details.

57

$L2

• $L2 script line param1 param2

Execute the specified script line as a function that takes 2 parameters. See the descrip-
tion of $L and $F2 ops for more details.

$S

• $S line

This is exactly the same as $L $ line but saves you space on not having to specify
the script number if the line you want to execute is within the same script.

See the description of $L for more details.

$S1

• $S1 line param

This is exactly the same as $L1 $ line param but saves you space on not having
to specify the script number if the line you want to execute is within the same script.

See the description of $L1 for more details.

$S2

• $S2 line param1 param2

This is exactly the same as $L2 $ line param1 param2 but saves you space on not
having to specify the script number if the line you want to execute is within the same
script.

See the description of $L2 for more details.

I1

• I1

This op returns the first parameter when a script is called as a function using $F1 /
$F2 / $L1 / $L2 / $S1 / $S2 ops. If the script is called using other ops, this op will
return zero.

58

I2

• I2

This op returns the second parameter when a script is called as a function using $F2
/ $L2 / $S2 ops. If the script is called using other ops, this op will return zero.

FR

• FR / FR x

Use this op to get or set the return value in a script that is called as a function.

SCENE

• SCENE / SCENE x

Load scene x (0-31).

Does not execute the I script. Will not execute from the I script on scene load. Will
execute on subsequent calls to the I script.

WARNING: You will lose any unsaved changes to your scene.

SCENE.G

• SCENE.G x

Load scene x (0-31) without loading grid button and fader states.

WARNING: You will lose any unsaved changes to your scene.

SCENE.P

• SCENE.P x

Load scene x (0-31) without loading pattern data.

WARNING: You will lose any unsaved changes to your scene.

INIT

• INIT

WARNING: You will lose all settings when you initialize using INIT - there is NO undo!

59

INIT.DATA

• INIT.DATA

Clears the following variables and resets them to default values: A, B, C, D, CV slew,
Drunk min/max, M, O, Q, R, T, TR. Does not affect the CV input (IN) or the Parameter
knob (PARAM) values.

60

Maths

Logical operators such as EQ, OR and LT return 1 for true, and 0 for false.

OP OP (set) (aliases) Description

ADD x y + add x and y together
SUB x y - subtract y from x
MUL x y * multiply x and y together
DIV x y / divide x by y
MOD x y % find the remainder after division

of x by y
? x y z if condition x is true return y,

otherwise return z
MIN x y return the minimum of x and y
MAX x y return the maximum of x and y
LIM x y z limit the value x to the range y to

z inclusive
WRAP x y z WRP limit the value x to the range y to

z inclusive, but with wrapping
QT x y round x to the closest multiple

of y (quantise)
AVG x y the average of x and y
EQ x y == does x equal y
NE x y != , XOR x is not equal to y
LT x y < x is less than y
GT x y > x is greater than y
LTE x y <= x is less than or equal to y
GTE x y >= x is greater than or equal to y
INR l x h >< x is greater than l and less than

h (within range)
OUTR l x h <> x is less than l or greater than h

(out of range)
INRI l x h >=< x is greater than or equal to l

and less than or equal to h
(within range, inclusive)

OUTRI l x h <=> x is less than or equal to l or
greater than or equal to h (out of
range, inclusive)

EZ x ! x is 0, equivalent to logical NOT
NZ x x is not 0
LSH x y << left shift x by y bits, in effect

multiply x by 2 to the power of y

61

OP OP (set) (aliases) Description

RSH x y >> right shift x by y bits, in effect
divide x by 2 to the power of y

LROT x y <<< circular left shift x by y bits,
wrapping around when bits fall
off the end

RROT x y >>> circular right shift x by y bits,
wrapping around when bits fall
off the end

| x y bitwise or x
& x y bitwise and x & y
^ x y bitwise xor x ^ y
~ x bitwise not, i.e.: inversion of x
BSET x y set bit y in value x
BGET x y get bit y in value x
BCLR x y clear bit y in value x
BTOG x y toggle bit y in value x
BREV x reverse bit order in value x
ABS x absolute value of x
AND x y && logical AND of x and y
AND3 x y z &&& logical AND of x, y and z
AND4 x y z a &&&& logical AND of x, y, z and a
OR x y || logical OR of x and y
OR3 x y z ||| logical OR of x, y and z
OR4 x y z a |||| logical OR of x, y, z and a
SCALE a b x y i SCL scale i from range a to b to

range x to y, i.e. i * (y - x)
/ (b - a)

SCALE a b i SCL0 scale i from range 0 to a to
range 0 to b

EXP x exponentiation table lookup.
0-16383 range (V 0-10)

SGN x sign function: 1 for positive, -1
for negative, 0 for 0

MUL

• MUL x y
• alias: *

returns x times y, bounded to integer limits

62

QT

• QT x y

Round x to the closest multiple of y. See also: QT.S, QT.CS, QT.B, QT.BX in the Pitch
section.

AND

• AND x y
• alias: &&

Logical AND of x and y. Returns 1 if both x and y are greater than0, otherwise it returns
0.

AND3

• AND3 x y z
• alias: &&&

Logical AND of x, y and z. Returns 1 if both x, y and z are greater than 0, otherwise it
returns 0.

AND4

• AND4 x y z a
• alias: &&&&

Logical AND of x, y, z and a. Returns 1 if both x, y, z and a are greater than 0, otherwise
it returns 0.

OR

• OR x y
• alias: ||

Logical OR of x and y. Returns 1 if either x or y are greater than 0, otherwise it returns
0.

63

OR3

• OR3 x y z
• alias: |||

Logical OR of x, y and z. Returns 1 if either x, y or z are greater than 0, otherwise it
returns 0.

OR4

• OR4 x y z a
• alias: ||||

Logical OR of x, y, z and a. Returns 1 if either x, y, z or a are greater than 0, otherwise
it returns 0.

64

Delay

The DEL delay op allow commands to be sheduled for execution after a defined interval
by placing them into a buffer which can hold up to 64 commands. Commands can be
delayed by up to 16 seconds.

In LIVE mode, the second icon (an upside-down U) will be lit up when there is a com-
mand in the DEL buffer.

OP OP (set) (aliases) Description

DEL x: ... Delay command by x ms
DEL.CLR Clear the delay buffer
DEL.X x
delay_time: ...

Delay x commands at
delay_time ms intervals

DEL.R x
delay_time: ...

Trigger the command following
the colon once immediately, and
delay x - 1 commands at
delay_time ms intervals

DEL.G x
delay_time num
denom: ...

Trigger the command once
immediately and x - 1 times at
ms intervals of delay_time *
(num/denom)^n where n
ranges from 0 to x - 1.

DEL.B
delay_time
bitmask: ...

Trigger the command up to 16
times at intervals of
delay_time ms. Active
intervals set in 16-bit bitmask,
LSB = immediate.

DEL

• DEL x: ...

Delay the command following the colon by x ms by placing it into a buffer. The buffer
can hold up to 16 commands. If the buffer is full, additional commands will be dis-
carded.

DEL.CLR

• DEL.CLR

Clear the delay buffer, cancelling the pending commands.

65

DEL.X

• DEL.X x delay_time: ...

Delay the command following the colon x times at intervals of delay_time ms by
placing it into a buffer. The buffer can hold up to 16 commands. If the buffer is full,
additional commands will be discarded.

DEL.R

• DEL.R x delay_time: ...

Delay the command following the colon once immediately, and x - 1 times at intervals
of delay_timems by placing it into a buffer. The buffer can hold up to 16 commands.
If the buffer is full, additional commands will be discarded.

DEL.G

• DEL.G x delay_time num denom: ...

Trigger the command once immediately and x - 1 times at ms intervals of de-
lay_time * (num/denom)^n where n ranges from 0 to x - 1 by placing it into a
buffer. The buffer can hold up to 16 commands. If the buffer is full, additional com-
mands will be discarded.

66

Stack

These operators manage a last in, first out, stack of commands, allowing them to be
memorised for later execution at an unspecified time. The stack can hold up to 8 com-
mands. Commands added to a full stack will be discarded.

OP OP (set) (aliases) Description

S: ... Place a command onto the stack
S.CLR Clear all entries in the stack
S.ALL Execute all entries in the stack
S.POP Execute the most recent entry
S.L Get the length of the stack

S

• S: ...

Add the command following the colon to the top of the stack. If the stack is full, the
command will be discarded.

S.CLR

• S.CLR

Clear the stack, cancelling all of the commands.

S.ALL

• S.ALL

Execute all entries in the stack (last in, first out), clearing the stack in the process.

S.POP

• S.POP

Pop the most recent command off the stack and execute it.

67

S.L

• S.L

Get the number of entries in the stack.

68

Patterns

Patterns facilitate musical data manipulation– lists of numbers that can be used as
sequences, chord sets, rhythms, or whatever you choose. Pattern memory consists
four banks of 64 steps. Functions are provided for a variety of pattern creation, trans-
formation, and playback.

New in teletype 2.0, a second version of all Pattern ops have been added. The original P
ops (P, P.L, P.NEXT, etc.) act upon the ‘working pattern’ as defined by P.N. By default
the working pattern is assigned to pattern 0 (P.N 0), in order to execute a command
on pattern 1 using P ops you would need to first reassign the working pattern to pattern
1 (P.N 1).

The new set of ops, PN (PN, PN.L, PN.NEXT, etc.), include a variable to designate the
pattern number they act upon, and don’t effect the pattern assignment of the ‘working
pattern’ (ex: PN.NEXT 2 would increment pattern 2 one index and return the value
at the new index). For simplicity throughout this introduction we will only refer to the
P ops, but keep in mind that they now each have a PN counterpart (all of which are
detailed below)

Both patterns and their arrays of numbers are indexed from 0. This makes the first
pattern number 0, and the first value of a pattern is index 0. The pattern index (P.I)
functions like a playhead which can be moved throughout the pattern and/or read using
ops: P, P.I, P.HERE, P.NEXT, and P.PREV. You can contain pattern movements to
ranges of a pattern and define wrapping behavior using ops: P.START, P.END, P.L,
and P.WRAP.

Values can be edited, added, and retrieved from the command line using ops: P, P.INS,
P.RM, P.PUSH, P.HERE, P.NEXT, and P.PREV. Some of these ops will additionally
impact the pattern length upon their execution: P.INS, P.RM, P.PUSH, and P.POP.

To see your current pattern data use the <tab> key to cycle through live mode, edit
mode, and pattern mode. In pattern mode each of the 4 patterns is represented as a
column. You can use the arrow keys to navigate throughout the 4 patterns and their 64
values. For reference a key of numbers runs the down the lefthand side of the screen
in pattern mode displaying 0-63.

From a blank set of patterns you can enter data by typing into the first cell in a column.
Once you hit <enter> you will move to the cell below and the pattern length will be-
come one step long. You can continue this process to write out a pattern of desired
length. The step you are editing is always the brightest. As you add steps to a pattern
by editing the value and hitting <enter> they become brighter than the unused cells.
This provides a visual indication of the pattern length.

The start and end points of a pattern are represented by the dotted line next to the
column, and the highlighted dot in this line indicates the current pattern index for each
of the patterns. See the key bindings for an extensive list of editing shortcuts available
within pattern mode.

69

OP OP (set) (aliases) Description

P.N P.N x get/set the pattern number for
the working pattern, default 0

P x P x y get/set the value of the working
pattern at index x

PN x y PN x y z get/set the value of pattern x at
index y

P.L P.L x get/set pattern length of the
working pattern, non-destructive
to data

PN.L x PN.L x y get/set pattern length of pattern
x. non-destructive to data

P.WRAP P.WRAP x when the working pattern
reaches its bounds does it wrap
(0/1), default 1 (enabled)

PN.WRAP x PN.WRAP x y when pattern x reaches its
bounds does it wrap (0/1),
default 1 (enabled)

P.START P.START x get/set the start location of the
working pattern, default 0

PN.START x PN.START x y get/set the start location of
pattern x, default 0

P.END P.END x get/set the end location of the
working pattern, default 63

PN.END x PN.END x y get/set the end location of the
pattern x, default 63

P.I P.I x get/set index position for the
working pattern.

PN.I x PN.I x y get/set index position for
pattern x

P.HERE P.HERE x get/set value at current index of
working pattern

PN.HERE x PN.HERE x y get/set value at current index of
pattern x

P.NEXT P.NEXT x increment index of working
pattern then get/set value

PN.NEXT x PN.NEXT x y increment index of pattern x
then get/set value

P.PREV P.PREV x decrement index of working
pattern then get/set value

PN.PREV x PN.PREV x y decrement index of pattern x
then get/set value

P.INS x y insert value y at index x of
working pattern, shift later
values down, destructive to loop
length

70

OP OP (set) (aliases) Description

PN.INS x y z insert value z at index y of
pattern x, shift later values
down, destructive to loop length

P.RM x delete index x of working
pattern, shift later values up,
destructive to loop length

PN.RM x y delete index y of pattern x, shift
later values up, destructive to
loop length

P.PUSH x insert value x to the end of the
working pattern (like a stack),
destructive to loop length

PN.PUSH x y insert value y to the end of
pattern x (like a stack),
destructive to loop length

P.POP return and remove the value
from the end of the working
pattern (like a stack), destructive
to loop length

PN.POP x return and remove the value
from the end of pattern x (like a
stack), destructive to loop length

P.MIN find the first minimum value in
the pattern between the START
and END for the working pattern
and return its index

PN.MIN x find the first minimum value in
the pattern between the START
and END for pattern x and return
its index

P.MAX find the first maximum value in
the pattern between the START
and END for the working pattern
and return its index

PN.MAX x find the first maximum value in
the pattern between the START
and END for pattern x and return
its index

P.SHUF shuffle the values in active
pattern (between its START and
END)

PN.SHUF x shuffle the values in pattern x
(between its START and END)

71

OP OP (set) (aliases) Description

P.ROT n rotate the values in the active
pattern n steps (between its
START and END, negative
rotates backward)

PN.ROT x n rotate the values in pattern x
(between its START and END,
negative rotates backward)

P.REV reverse the values in the active
pattern (between its START and
END)

PN.REV x reverse the values in pattern x
P.RND return a value randomly selected

between the start and the end
position

PN.RND x return a value randomly selected
between the start and the end
position of pattern x

P.+ x y increase the value of the
working pattern at index x by y

PN.+ x y z increase the value of pattern x
at index y by z

P.- x y decrease the value of the
working pattern at index x by y

PN.- x y z decrease the value of pattern x
at index y by z

P.+W x y a b increase the value of the
working pattern at index x by y
and wrap it to a..b range

PN.+W x y z a b increase the value of pattern x
at index y by z and wrap it to
a..b range

P.-W x y a b decrease the value of the
working pattern at index x by y
and wrap it to a..b range

PN.-W x y z a b decrease the value of pattern x
at index y by z and wrap it to
a..b range

P.MAP: ... apply the ‘function’ to each value
in the active pattern, I takes
each pattern value

PN.MAP x: ... apply the ‘function’ to each value
in pattern x, I takes each
pattern value

72

P.N

• P.N / P.N x

get/set the pattern number for the working pattern, default 0. All P ops refer to this
pattern.

P

• P x / P x y

get/set the value of the working pattern at index x. All positive values (0-63) can be
set or returned while index values greater than 63 clip to 63. Negative x values are
indexed backwards from the end of the pattern length of the working pattern.

Example:

with a pattern length of 6 for the working pattern:

P 10 retrieves the working pattern value at index 6

P.I -2 retrieves the working pattern value at index 4

This applies to PN as well, except the pattern number is the first variable and a second
variable specifies the index.

P.WRAP

• P.WRAP / P.WRAP x

when the working pattern reaches its bounds does it wrap (0/1). With PN.WRAP en-
abled (1), when an index reaches its upper or lower bound using P.NEXT or P.PREV it
will wrap to the other end of the pattern and you can continue advancing. The bounds
of P.WRAP are defined through P.L, P.START, and P.END.

If wrap is enabled (P.WRAP 1) a pattern will begin at its start location and advance to
the lesser index of either its end location or the end of its pattern length

Examples:

With wrap enabled, a pattern length of 6, a start location of 2 , and an end location of
8.

P.WRAP 1; P.L 6; P.START 2; P.END 8

The pattern will wrap between the indexes 2 and 5.

With wrap enabled, a pattern length of 10, a start location of 3, and an end location of
6.

P.WRAP 1; P.L 10; P.START 3; P.END 6

The pattern will wrap between the indexes 3 and 6.

73

If wrap is disabled (P.WRAP 0) a pattern will run between its start and end locations
and halt at either bound.

This applies to PN.WRAP as well, except the pattern number is the first variable and a
second variable specifies the wrap behavior (0/1).

P.I

• P.I / P.I x

get/set index position for the working pattern. all values greater than pattern length
return the first step beyond the pattern length. negative values are indexed backwards
from the end of the pattern length.

Example:

With a pattern length of 6 (P.L 6), yielding an index range of 0-5:

P.I 3

moves the index of the working pattern to 3

P.I 10

moves the index of the working pattern to 6

P.I -2

moves the index of the working pattern to 4

This applies to PN.I, except the pattern number is the first variable and a second vari-
able specifics the index.

P.MAP

• P.MAP: ...

Replace each cell in the active pattern (between the START and END of the pattern) by
assigning the variable I to the current value of the cell, evaluating the command after
the mod, and assigning that pattern cell with the result. The ‘map’ higher-order function
from functional programming, with the command giving the function of I to map over
the pattern.

For example:

P.MAP: * 2 I => double each cell in the active pattern

74

Queue

These operators manage a first in, first out, queue of values. The length of the queue
can be dynamically changed up to a maximum size of 64 elements. A fixed length can
be set with the Q.N operator, or the queue can grow and shrink automatically by setting
Q.GRW 1. The queue contents will be preserved when the length is shortened.

Queues also offer operators that do math on the entire queue (the Q.AVG operator is
particularly useful for smoothing input values) or copy the queue to and from a tracker
pattern.

Most operators manipulates the elements up to (and including) length. Exceptions are
Q.I i x and Q.P2.

Examples, only first 8 elements shown for clarity: By default all elements of the queue
have a value of 0 and the length is set to 1.

Q.N "length" ->|
element nb: 1 | 2 3 4 5 6 7 8
value 0 | 0 0 0 0 0 0 0

Using the Q OP will add values to the beginning of the queue and push the other ele-
ments to the right. Q 1

1 | 0 0 0 0 0 0 0

Q 2 // add 2 to queue
Q 3 // add 3 to queue

3 | 2 1 0 0 0 0 0

Using the Q getter OP will return the last element in the queue, but not modify content
or the state of the queue.

Q // will return 3

3 | 2 1 0 0 0 0 0

Using the Q.N OP will either return the position of the end marker (1-indexed) or move
it:

Q.N 2 // increace the length to two by moving the end marker:

3 2 | 1 0 0 0 0 0

Q // get the value at the end, now `2`

75

By default grow is disabled, but it can be turned on with Q.GRW 1. With grow enabled,
the queue will automatically expand when new elements are added with Q x and like-
wise shrink when reading with Q.

Q.GRW // enable grow
3 2 | 1 0 0 0 0 0
Q 4 // add to to queue
4 3 2 | 1 0 0 0 0
Q // read element from queue, will return 2
4 3 | 2 1 0 0 0 0

OP OP (set) (aliases) Description

Q Q x Modify the queue entries
Q.N Q.N x The queue length
Q.AVG Q.AVG x Return the average of the queue
Q.CLR Q.CLR x Clear queue
Q.GRW Q.GRW x Get/set grow state
Q.SUM Q.SUM x Get sum of elements
Q.MIN Q.MIN x Get/set minimum value
Q.MAX Q.MAX x Get/set maximum value
Q.RND Q.RND x Get random element/randomize elements
Q.SRT Q.SRT Sort all or part of queue
Q.REV Reverse queue
Q.SH Q.SH x Shift elements in queue
Q.ADD x Q.ADD x i Perform addition on elements in queue
Q.SUB x Q.SUB x i Perform subtraction on elements in queue
Q.MUL x Q.MUL x i Perform multiplication on elements in queue
Q.DIV x Q.DIV x i Perform division on elements in queue
Q.MOD x Q.MOD x i Perform module (%) on elements in queue
Q.I i Q.I i x Get/set value of elements at index
Q.2P Q.2P i Copy queue to current pattern/copy queue to pattern at index i
Q.P2 Q.P2 i Copy current pattern to queue/copy pattern at index i to queue

Q

• Q / Q x

Gets the output value from the queue, or places x into the queue.

76

Q.N

• Q.N / Q.N x

Gets/sets the length of the queue. The length is 1-indexed.

Q.AVG

• Q.AVG / Q.AVG x

Getting the value the average of the values in the queue. Setting x sets the value of
each entry in the queue to x.

Q.CLR

• Q.CLR / Q.CLR x

Clear queue, set all values to 0, length to 1. If parameter x is provided, set first elements
to x.

Q.GRW

• Q.GRW / Q.GRW x

If grow is set (value of 1) the queue will automatically grow and shrink when using Q
(popping and pushing).

Q.SUM

• Q.SUM / Q.SUM x

Get sum of all elements in queue.

Q.MIN

• Q.MIN / Q.MIN x

Get the minimum value of elements in queue. If x is provided, set elements with a value
less than x to x.

77

Q.MAX

• Q.MAX / Q.MAX x

Get the maximum value of elements in queue. If x is provided, set elements with a
value greater than x to x.

Q.RND

• Q.RND / Q.RND x

Get a random element in queue.

If x > 0, set all elements to a random value 0-x. If x < 0, swap two elements -x number
of times. IF x == 0, do nothing.

Q.SRT

• Q.SRT / Q.SRT

Sort elements in queue. With no arguments, entire queue is sorted in accending order.

If x > 0, sort elements from index i to the end of queue. If x < 0, sort elements from
beginning of queue to index -i. IF x == 0, sort all elements.

Index i is 0-indexed.

Q.REV

• Q.REV

Reverse order of elements in queue.

Q.SH

• Q.SH / Q.SH x

Shift elements x locations to right. Negative values of x shifts to the left. No value
provided is equal to x = 1. Shifting is wrapped.

78

Q.ADD

• Q.ADD x / Q.ADD x i

Add x to all elements in queue. If index i is provided, only perform addition on element
at index i.

Index i is 0-indexed.

Q.SUB

• Q.SUB x / Q.SUB x i

Subtract x from all elements in queue. If index i is provided, only perform subtraction
on element at index i.

Index i is 0-indexed.

Q.MUL

• Q.MUL x / Q.MUL x i

Multiply all elements in queue with x. If index i is provided, only perform multiplication
on element at index i.

Index i is 0-indexed.

Q.DIV

• Q.DIV x / Q.DIV x i

Divide all elements in queue by x. If index i is provided, only perform division on ele-
ment at index i.

Index i is 0-indexed.

Q.MOD

• Q.MOD x / Q.MOD x i

Perform modulo of x (value = value % x) on all elements in queue. If index i is provided,
only perform modulo operation on element at index i.

Index i is 0-indexed.

79

Q.I

• Q.I i / Q.I i x

Get value of element at index i or set value of element i to value x. Indexing works on
entire lenght of queue, and is not limited to elements below queue end point.

Index i is 0-indexed.

Q.2P

• Q.2P / Q.2P i

Copy entire queue to current pattern or (if i provided) pattern at index i.

Index i is 0-indexed.

Q.P2

• Q.P2 / Q.P2 i

Copy current pattern to queue or (if i provided) copy pattern at index i to queue.

Index i is 0-indexed.

80

Turtle

A 2-dimensional, movable index into the pattern values as displayed on the TRACKER
screen.

OP OP (set) (aliases) Description

@ @ x get or set the current pattern
value under the turtle

@X @X x get the turtle X coordinate, or set
it to x

@Y @Y x get the turtle Y coordinate, or set
it to x

@MOVE x y move the turtle x cells in the X
axis and y cells in the Y axis

@F x1 y1 x2 y2 set the turtle’s fence to corners
x1,y1 and x2,y2

@FX1 @FX1 x get the left fence line or set it to
x

@FX2 @FX2 x get the right fence line or set it
to x

@FY1 @FY1 x get the top fence line or set it to
x

@FY2 @FY2 x get the bottom fence line or set
it to x

@SPEED @SPEED x get the speed of the turtle’s
@STEP in cells per step or set it
to x

@DIR @DIR x get the direction of the turtle’s
@STEP in degrees or set it to x

@STEP move @SPEED/100 cells forward
in @DIR, triggering @SCRIPT on
cell change

@BUMP @BUMP 1 get whether the turtle fence
mode is BUMP, or set it to BUMP
with 1

@WRAP @WRAP 1 get whether the turtle fence
mode is WRAP, or set it to WRAP
with 1

@BOUNCE @BOUNCE 1 get whether the turtle fence
mode is BOUNCE, or set it to
BOUNCE with 1

@SCRIPT @SCRIPT x get which script runs when the
turtle changes cells, or set it to x

81

OP OP (set) (aliases) Description

@SHOW @SHOW 0/1 get whether the turtle is
displayed on the TRACKER
screen, or turn it on or off

82

Grid

Grid operators allow creating scenes that can interact with grid connected to teletype
(important: grid must be powered externally, do not connect it directly to teletype!).
You can light up individual LEDs, draw shapes and create controls (such as buttons
and faders) that can be used to trigger and control scripts. You can take advantage of
grid operators even without an actual grid by using the built in Grid Visualizer.

For more information on grid integration see Advanced section and Grid Studies28.

As there are many operators let’s review some naming conventions that apply to the
majority of them. All grid ops start with G.. For control related ops this is followed by 3
letters specifying the control: G.BTN for buttons, G.FDR for faders. To define a control
you use the main ops G.BTN and G.FDR. To define multiple controls replace the last
letter with X: G.BTX, G.FDX.

All ops that initialize controls use the same list of parameters: id, coordinates, width,
height, type, level, script. When creating multiple controls there are two extra param-
eters: the number of columns and the number of rows. Controls are created in the
current group (set with G.GRP). To specify a different group use the group versions of
the 4 above ops - G.GBT, G.GFD, G.GBX, G.GFX and specify the desired group as the
first parameter.

All controls share some common properties, referenced by adding a . and:

• EN: G.BTN.EN, G.FDR.EN - enables or disables a control
• V: G.BTN.V, G.FDR.V - value, 1/0 for buttons, range value for faders
• L: G.BTN.L, G.FDR.L - level (brightness level for buttons and coarse faders, max

value level for fine faders)
• X: G.BTN.X, G.FDR.X - the X coordinate
• Y: G.BTN.Y, G.FDR.Y - the Y coordinate

To get/set properties for individual controls you normally specify the control id as the
first parameter: G.FDR.V 5 will return the value of fader 5. Quite often the actual id
is not important, you just want to work with the latest control pressed. As these are
likely the ops to be used most often they are offered as shortcuts without a .: G.BTNV
returns the value of the last button pressed, G.FDRL 4will set the level of the last fader
pressed etc etc.

OP OP (set) (aliases) Description

G.RST full grid reset
G.CLR clear all LEDs
G.DIM level set dim level
G.ROTATE x set grid rotation
G.KEY x y action emulate grid press

28https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

83

https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

OP OP (set) (aliases) Description

G.GRP G.GRP id get/set current group
G.GRP.EN id G.GRP.EN id x enable/disable group or check if

enabled
G.GRP.RST id reset all group controls
G.GRP.SW id switch groups
G.GRP.SC id G.GRP.SC id

script
get/set group script

G.GRPI get last group
G.LED x y G.LED x y

level
get/set LED

G.LED.C x y clear LED
G.REC x y w h
fill border

draw rectangle

G.RCT x1 y1 x2
y2 fill border

draw rectangle

G.BTN id x y w h
type level
script

initialize button

G.GBT group id x
y w h type level
script

initialize button in group

G.BTX id x y w h
type level
script columns
rows

initialize multiple buttons

G.GBX group id x
y w h type level
script columns
rows

initialize multiple buttons in
group

G.BTN.EN id G.BTN.EN id x enable/disable button or check
if enabled

G.BTN.X id G.BTN.X id x get/set button x coordinate
G.BTN.Y id G.BTN.Y id y get/set button y coordinate
G.BTN.V id G.BTN.V id

value
get/set button value

G.BTN.L id G.BTN.L id
level

get/set button level

G.BTNI id of last pressed button
G.BTNX G.BTNX x get/set x of last pressed button
G.BTNY G.BTNY y get/set y of last pressed button
G.BTNV G.BTNV value get/set value of last pressed

button

84

OP OP (set) (aliases) Description

G.BTNL G.BTNL level get/set level of last pressed
button

G.BTN.SW id switch button
G.BTN.PR id
action

emulate button press/release

G.GBTN.V group
value

set value for group buttons

G.GBTN.L group
odd_level
even_level

set level for group buttons

G.GBTN.C group get count of currently pressed
G.GBTN.I group
index

get id of pressed button

G.GBTN.W group get button block width
G.GBTN.H group get button block height
G.GBTN.X1 group get leftmost pressed x
G.GBTN.X2 group get rightmost pressed x
G.GBTN.Y1 group get highest pressed y
G.GBTN.Y2 group get lowest pressed y
G.FDR id x y w h
type level
script

initialize fader

G.GFD grp id x y
w h type level
script

initialize fader in group

G.FDX id x y w h
type level
script columns
rows

initialize multiple faders

G.GFX group id x
y w h type level
script columns
rows

initialize multiple faders in group

G.FDR.EN id G.FDR.EN id x enable/disable fader or check if
enabled

G.FDR.X id G.FDR.X id x get/set fader x coordinate
G.FDR.Y id G.FDR.Y id y get/set fader y coordinate
G.FDR.N id G.FDR.N id

value
get/set fader value

G.FDR.V id G.FDR.V id
value

get/set scaled fader value

G.FDR.L id G.FDR.L id
level

get/set fader level

85

OP OP (set) (aliases) Description

G.FDRI id of last pressed fader
G.FDRX G.FDRX x get/set x of last pressed fader
G.FDRY G.FDRY y get/set y of last pressed fader
G.FDRN G.FDRN value get/set value of last pressed

fader
G.FDRV G.FDRV value get/set scaled value of last

pressed fader
G.FDRL G.FDRL level get/set level of last pressed

fader
G.FDR.PR id
value

emulate fader press

G.GFDR.N group
value

set value for group faders

G.GFDR.V group
value

set scaled value for group faders

G.GFDR.L group
odd_level
even_level

set level for group faders

G.GFDR.RN group
min max

set range for group faders

G.RST

• G.RST

Full grid reset - hide all controls and reset their properties to the default values, clear
all LEDs, reset the dim level and the grid rotation.

G.CLR

• G.CLR

Clear all LEDs set with G.LED, G.REC or G.RCT.

G.DIM

• G.DIM level

Set the dim level (0..14, higher values dim more). To remove set to 0.

86

G.ROTATE

• G.ROTATE x

Set the grid rotation (0 - no rotation, 1 - rotate by 180 degrees).

G.KEY

• G.KEY x y action

Emulate a grid key press at the specified coordinates (0-based). Set action to 1 to
emulate a press, 0 to emulate a release. You can also emulate a button press with
G.BTN.PR and a fader press with G.FDR.PR.

G.GRP

• G.GRP / G.GRP id

Get or set the current group. Grid controls created without specifying a group will be
assigned to the current group. This op doesn’t enable/disable groups - use G.GRP.EN
for that. The default current group is 0. 64 groups are available.

G.GRP.EN

• G.GRP.EN id / G.GRP.EN id x

Enable or disable the specified group or check if it’s currently enabled. 1 means en-
abled, 0 means disabled. Enabling or disabling a group enables / disables all controls
assigned to that group (disabled controls are not shown and receive no input). This
allows groups to be used as pages - initialize controls in different groups, and then
simply enable one group at a time.

G.GRP.RST

• G.GRP.RST id

Reset all controls associated with the specified group. This will disable the controls
and reset their properties to the default values. This will also reset the fader scale
range to 0..16383.

87

G.GRP.SW

• G.GRP.SW id

Switch groups. Enables the specified group, disables all others.

G.GRP.SC

• G.GRP.SC id / G.GRP.SC id script

Assign a script to the specified group, or get the currently assigned script. The script
gets executed whenever a control associated with the group receives input. It is pos-
sible to have different scripts assigned to a control and the group it belongs to. Use 9
for Metro and 10 for Init. To unassign, set it to 0.

G.GRPI

• G.GRPI

Get the id of the last group that received input. This is useful when sharing a script
between multiple groups.

G.LED

• G.LED x y / G.LED x y level

Set the LED level or get the current level at the specified coordinates. Possible level
range is 0..15 (on non varibright grids anything below 8 is ‘off’, 8 or above is ‘on’).

Grid controls get rendered first, and LEDs are rendered last. This means you can use
LEDs to accentuate certain areas of the UI. This also means that any LEDs that are set
will block whatever is underneath them, even with the level of 0. In order to completely
clear an LED set its level to -3. There are two other special values for brightness: -1 will
dim, and -2 will brighten what’s underneath. They can be useful to highlight the current
sequence step, for instance.

G.LED.C

• G.LED.C x y

Clear the LED at the specified coordinates. This is the same as setting the brightness
level to -3. To clear all LEDs use G.CLR.

88

G.REC

• G.REC x y w h fill border

Draw a rectangle with the specified width and height. x and y are the coordinates of
the top left corner. Coordinates are 0-based, with the 0,0 point located at the top left
corner of the grid. You can draw rectangles that are partially outside of the visible area,
and they will be properly cropped.

fill and border specify the brightness levels for the inner area and the one-LED-
wide border respectively, 0..15 range. You can use the three special brightness levels:
-1 to dim, -2 to brighten and -3 for transparency (you could draw just a frame by setting
fill to -3, for instance).

To draw lines, set the width or the height to 1. In this case only border brightness level
is used.

G.RCT

• G.RCT x1 y1 x2 y2 fill border

Same as G.REC but instead of specifying the width and height you specify the coordi-
nates of the top left corner and the bottom right corner.

G.BTN

• G.BTN id x y w h type level script

Initializes and enables a button with the specified id. 256 buttons are available (ids are
0-based so the possible id range is 0..255. The button will be assigned to the current
group (set with G.GRP). Buttons can be reinitialized at any point.

x and y specify the coordinates of the top left corner, and w and h specify width and
height respectively. type determines whether the button is latching (1) or momentary
(0). level sets the “off” brightness level, possible rand is -3..15 (the brightness level
for pressed buttons is fixed at 13).

script specifies the script to be executed when the button is pressed or released (the
latter only for momentary buttons). Use 9 for Metro and 10 for Init. Use 0 if you don’t
need a script assigned.

G.GBT

• G.GBT group id x y w h type level script

Initialize and enable a button. Same as G.BTN but you can also choose which group
to assign the button too.

89

G.BTX

• G.BTX id x y w h type level script columns rows

Initialize and enable a block of buttons in the current group with the specified number
of columns and rows . Ids are incremented sequentially by columns and then by rows.

G.GBX

• G.GBX group id x y w h type level script columns rows

Initialize and enable a block of buttons. Same as G.BTX but you can also choose which
group to assign the buttons too.

G.BTN.EN

• G.BTN.EN id / G.BTN.EN id x

Enable (set x to 1) or disable (set x to 0) a button with the specified id, or check if
it’s currently enabled. Disabling a button hides it and stops it from receiving input but
keeps all the other properties (size/location etc) intact.

G.BTN.X

• G.BTN.X id / G.BTN.X id x

Get or set x coordinate for the specified button’s top left corner.

G.BTN.Y

• G.BTN.Y id / G.BTN.Y id y

Get or set y coordinate for the specified button’s top left corner.

G.BTN.V

• G.BTN.V id / G.BTN.V id value

Get or set the specified button’s value. For buttons the value of 1 means the button is
pressed and 0 means it’s not. If there is a script assigned to the button it will not be
triggered if you change the value - use G.BTN.PR for that.

Button values don’t change when a button is disabled. Button values are stored with
the scene (both to flash and to USB sticks).

90

G.BTN.L

• G.BTN.L id / G.BTN.L id level

Get or set the specified button’s brightness level (-3..15). Please note you can only set
the level for unpressed buttons, the level for pressed buttons is fixed at 13.

G.BTNI

• G.BTNI

Get the id of the last pressed button. This is useful when multiple buttons are assigned
to the same script.

G.BTNX

• G.BTNX / G.BTNX x

Get or set x coordinate of the last pressed button’s top left corner. This is the same as
G.BTN.X G.BTNI.

G.BTNY

• G.BTNY / G.BTNY y

Get or set y coordinate of the last pressed button’s top left corner. This is the same as
G.BTN.Y G.BTNI.

G.BTNV

• G.BTNV / G.BTNV value

Get or set the value of the last pressed button. This is the same as G.BTN.V G.BTNI.
This op is especially useful with momentary buttons when you want to react to presses
or releases only - just put IF EZ G.BTNV: BREAK in the beginning of the assigned
script (this will ignore releases, to ignore presses replace NZ with EZ).

G.BTNL

• G.BTNL / G.BTNL level

Get or set the brightness level of the last pressed button. This is the same as G.BTN.L
G.BTNI.

91

G.BTN.SW

• G.BTN.SW id

Set the value of the specified button to 1 (pressed), set it to 0 (not pressed) for all other
buttons within the same group (useful for creating radio buttons).

G.BTN.PR

• G.BTN.PR id action

Emulate pressing/releasing the specified button. Set action to 1 for press, 0 for re-
lease (action is ignored for latching buttons).

G.GBTN.V

• G.GBTN.V group value

Set the value for all buttons in the specified group.

G.GBTN.L

• G.GBTN.L group odd_level even_level

Set the brightness level (0..15) for all buttons in the specified group. You can use dif-
ferent values for odd and even buttons (based on their index within the group, not their
id) - this can be a good way to provide some visual guidance.

G.GBTN.C

• G.GBTN.C group

Get the total count of all the buttons in the specified group that are currently pressed.

G.GBTN.I

• G.GBTN.I group index

Get the id of a currently pressed button within the specified group by its index (0-based).
The index should be between 0 and C-1 where C is the total count of all pressed buttons
(you can get it using G.GBTN.C).

92

G.GBTN.W

• G.GBTN.W group

Get the width of the rectangle formed by pressed buttons within the specified group.
This is basically the distance between the leftmost and the rightmost pressed buttons,
inclusive. This op is useful for things like setting a loop’s length, for instance. To do so,
check if there is more than one button pressed (using G.GBTN.C) and if there is, use
G.GBTN.W to set the length.

G.GBTN.H

• G.GBTN.H group

Get the height of the rectangle formed by pressed buttons within the specified group
(see G.GBTN.W for more details).

G.GBTN.X1

• G.GBTN.X1 group

Get the X coordinate of the leftmost pressed button in the specified group. If no buttons
are currently pressed it will return -1.

G.GBTN.X2

• G.GBTN.X2 group

Get the X coordinate of the rightmost pressed button in the specified group. If no but-
tons are currently pressed it will return -1.

G.GBTN.Y1

• G.GBTN.Y1 group

Get the Y coordinate of the highest pressed button in the specified group. If no buttons
are currently pressed it will return -1.

G.GBTN.Y2

• G.GBTN.Y2 group

Get the Y coordinate of the lowest pressed button in the specified group. If no buttons
are currently pressed it will return -1.

93

G.FDR

• G.FDR id x y w h type level script

Initializes and enables a fader with the specified id. 64 faders are available (ids are
0-based so the possible id range is 0..63). The fader will be assigned to the current
group (set with G.GRP). Faders can be reinitialized at any point.

x and y specify the coordinates of the top left corner, and w and h specify width and
height respectively.

type determines the fader type and orientation. Possible values are:

• 0 - coarse, horizontal bar
• 1 - coarse, vertical bar
• 2 - coarse, horizontal dot
• 3 - coarse, vertical dot
• 4 - fine, horizontal bar
• 5 - fine, vertical bar
• 6 - fine, horizontal dot
• 7 - fine, vertical dot

Coarse faders have the possible range of 0..N-1 where N is width for horizontal faders
or height for vertical faders. Pressing anywhere within the fader area sets the fader
value accordingly. Fine faders allow selecting a bigger range of values by mapping
the range to the fader’s height or width and dedicating the edge buttons for increment-
ing/decrementing. Fine faders employ varibrightness to reflect the current value.

level has a different meaning for coarse and fine faders. For coarse faders it se-
lects the background brightness level (similar to buttons). For fine faders this is the
maximum value level (the minimum level being 0). In order to show each value dis-
tinctly using varibright the maximum level possible is the number of available buttons
multiplied by 16 minus 1 (since range is 0-based). Remember that 2 buttons are al-
ways reserved for increment/decrement. Using a larger number is allowed - it will be
automatically adjusted to what’s possible.

script specifies the script to be executed when the fader value is changed. Use 9 for
Metro and 10 for Init. Use 0 if you don’t need a script assigned.

G.GFD

• G.GFD grp id x y w h type level script

Initialize and enable a fader. Same as G.FDR but you can also choose which group to
assign the fader too.

94

G.FDX

• G.FDX id x y w h type level script columns rows

Initialize and enable a block of faders with the specified number of columns and rows
in the current group. Ids are incremented sequentially by columns and then by rows.

G.GFX

• G.GFX group id x y w h type level script columns rows

Initialize and enable a block of faders. Same as G.FDX but you can also choose which
group to assign the faders too.

G.FDR.EN

• G.FDR.EN id / G.FDR.EN id x

Enable (set x to 1) or disable (set x to 0) a fader with the specified id, or check if it’s
currently enabled. Disabling a fader hides it and stops it from receiving input but keeps
all the other properties (size/location etc) intact.

G.FDR.X

• G.FDR.X id / G.FDR.X id x

Get or set x coordinate for the specified fader’s top left corner.

G.FDR.Y

• G.FDR.Y id / G.FDR.Y id y

Get or set y coordinate for the specified fader’s top left corner.

G.FDR.N

• G.FDR.N id / G.FDR.N id value

95

Get or set the specified fader’s value. The possible range for coarse faders is 0..N-1
where N is fader’s width (for horizontal faders) or height (for vertical faders). For fine
faders the possible range is 0..N where N is the maximum level set when the fader was
initialized (see G.FDR for more details).

Sometimes it’s more convenient to map the possible fader range to a different range
(when using it to control a CV, for instance). Use G.FDR.V for that.

If there is a script assigned to the fader it will not be triggered if you change the value
- use G.FDR.PR for that.

Fader values don’t change when a fader is disabled. Fader values are stored with the
scene (both to flash and to USB sticks).

G.FDR.V

• G.FDR.V id / G.FDR.V id value

Get or set the specified fader’s value mapped to a range set with G.GFDR.RN. This
op is very convenient for using faders to control a known range, such as CV - simply
create a fader and set a range and then assign values directly without any additional
calculations, like this: CV 1 G.FDR.V 1.

G.FDR.L

• G.FDR.L id / G.FDR.L id level

Get or set the specified fader’s brightness level (for coarse faders), or the maximum
value level (for fine faders).

G.FDRI

• G.FDRI

Get the id of the last pressed fader. This is useful when multiple faders are assigned
to the same script.

G.FDRX

• G.FDRX / G.FDRX x

Get or set x coordinate of the last pressed fader’s top left corner. This is the same as
G.FDR.X G.FDRI.

96

G.FDRY

• G.FDRY / G.FDRY y

Get or set y coordinate of the last pressed fader’s top left corner. This is the same as
G.BTN.Y G.BTNI.

G.FDRN

• G.FDRN / G.FDRN value

Get or set the value of the last pressed fader. This is the same as G.FDR.N G.FDRI.
See G.FDR.N for more details.

G.FDRV

• G.FDRV / G.FDRV value

Get or set the scaled value of the last pressed fader. This is the same as G.FDR.V
G.FDRI. See G.FDR.V for more details.

G.FDRL

• G.FDRL / G.FDRL level

Get or set the brightness level (for coarse faders), or the maximum value level (for fine
faders) of the last pressed fader. This is the same as G.FDR.L G.BTNI. For more
details on levels see G.FDR.

G.FDR.PR

• G.FDR.PR id value

Emulate pressing the specified fader. Fader value will be set to the specified value, and
if there is a script assigned it will be executed.

G.GFDR.N

• G.GFDR.N group value

Set the value for all faders in the specified group. This can be useful for resetting all
faders in a group. See G.FDR.N for more details.

97

G.GFDR.V

• G.GFDR.V group value

Set the scaled value for all faders in the specified group. This can be useful for resetting
all faders in a group. See G.FDR.V for more details.

G.GFDR.L

• G.GFDR.L group odd_level even_level

Set the brightness level (0..15) for all faders in the specified group. You can use differ-
ent values for odd and even faders (based on their index within the group, not their id)
- this can be a good way to provide some visual guidance.

G.GFDR.RN

• G.GFDR.RN group min max

Set the range to be used for V fader values (G.FDR.V, G.FDRV, G.GFDR.V). While the
.N ops provide the actual fader value sometimes it’s more convenient to map it to a
different range so it can be used directly for something like a CV without having to scale
it each time.

An example: let’s say you create a coarse fader with the width of 8 which will be used
to control a CV output where the voltage must be in the 2V..5V range. Using G.FDR.N
you would need to do this: CV 1 SCL 0 7 V 2 V 5 G.FDR.N 0. Instead you can
set the range for scaling once: G.GFDR.RN 0 V 2 V 5 (assuming the fader is in
group 0) and then simply do CV 1 G.FDR.V 0.

The range is shared by all faders within the same group. If you need to use a different
range use a different group when initializing a fader.

The default range is 0..16383. G.RST and G.GRP.RST reset ranges to the default
value.

98

MIDI in

MIDI in ops allow the Teletype to react to MIDI events. MIDI is received via the USB port -
simply plug a MIDI controller or sequencer into the USB port. Unless your MIDI device is
powered externally, make sure your power supply can provide sufficient power! Please
note that not all devices are supported.

To use the MIDI in ops, you need to assign MIDI events to one of the scripts with MI.$
op. You can assign different event types to different scripts (so, script 1 could react
to Note On events and script 2 to Note Off, for instance). You can assign multiple
event types to the same script too. Various ops allow you to get detailed information
about the event type and any additional data. It’s possible that more than one event
happens before a script is called (say, if you turn multiple knobs at once or play chords).
To properly process them all, use indexed ops to get each event data instead of only
processing the last event. The indexed ops use variable I as the index to allow easy
use in loops.

OP OP (set) (aliases) Description

MI.$ x MI.$ x y assign MIDI event type x to
script y

MI.LE get the latest event type
MI.LCH get the latest channel (1..16)
MI.LN get the latest Note On (0..127)
MI.LNV get the latest Note On scaled to

teletype range (shortcut for N
MI.LN)

MI.LV get the latest velocity (0..127)
MI.LVV get the latest velocity scaled to

0..16383 range (0..+10V)
MI.LO get the latest Note Off (0..127)
MI.LC get the latest controller number

(0..127)
MI.LCC get the latest controller value

(0..127)
MI.LCCV get the latest controller value

scaled to 0..16383 range
(0..+10V)

MI.NL get the number of Note On
events

MI.NCH get the Note On event channel
(1..16) at index specified by
variable I

MI.N get the Note On (0..127) at index
specified by variable I

99

OP OP (set) (aliases) Description

MI.NV get the Note On scaled to
0..+10V range at index specified
by variable I

MI.V get the velocity (0..127) at index
specified by variable I

MI.VV get the velocity scaled to 0..10V
range at index specified by
variable I

MI.OL get the number of Note Off
events

MI.OCH get the Note Off event channel
(1..16) at index specified by
variable I

MI.O get the Note Off (0..127) at index
specified by variable I

MI.CL get the number of controller
events

MI.CCH get the controller event channel
(1..16) at index specified by
variable I

MI.C get the controller number
(0..127) at index specified by
variable I

MI.CC get the controller value (0..127)
at index specified by variable I

MI.CCV get the controller value scaled to
0..+10V range at index specified
by variable I

MI.CLKD MI.CLKD x set clock divider to x (1-24) or
get the current divider

MI.CLKR reset clock counter

MI.$

• MI.$ x / MI.$ x y

Assign a script to be triggered when a MIDI event of the specified type is received. The
following types are supported: 0 - all events 1 - note on 2 - note off 3 - controller change
4 - clock 5 - start 6 - stop 7 - continue

100

Calibration

OP OP (set) (aliases) Description

DEVICE.FLIP Flip the screen/inputs/outputs
IN.CAL.MIN Reads the input CV and assigns

the voltage to the zero point
IN.CAL.MAX Reads the input CV and assigns

the voltage to the max point
IN.CAL.RESET Resets the input CV calibration
PARAM.CAL.MIN Reads the Parameter Knob

minimum position and assigns a
zero value

PARAM.CAL.MAX Reads the Parameter Knob
maximum position and assigns
the maximum point

PARAM.CAL.RESET Resets the Parameter Knob
calibration

CV.CAL n mv1v
mv3v

Calibrate CV output n

CV.CAL.RESET n Reset calibration data for CV
output n

DEVICE.FLIP

• DEVICE.FLIP

Flip the screen, the inputs and the outputs. This op is useful if you want to mount your
Teletype upside down. The new state will be saved to flash.

IN.CAL.MIN

• IN.CAL.MIN

1. Connect a patch cable from a calibrated voltage source
2. Set the voltage source to 0 volts
3. Execute IN.CAL.MIN from the live terminal
4. Call IN and confirm the 0 result

IN.CAL.MAX

• IN.CAL.MAX

101

5. Set the voltage source to target maximum voltage (10V)
6. Execute IN.CAL.MAX from the live terminal
7. Call IN and confirm that the result is 16383

PARAM.CAL.MIN

• PARAM.CAL.MIN

1. Turn the PARAM knob all the way to the left
2. Execute PARAM.CAL.MIN from the live terminal
3. Call PARAM and confirm the 0 result

PARAM.CAL.MAX

• PARAM.CAL.MAX

4. Turn the knob all the way to the right
5. Execute PARAM.CAL.MAX from the live terminal
6. Call PARAM and verify that the result is 16383

CV.CAL

• CV.CAL n mv1v mv3v

Following a short calibration procedure, you can use CV.CAL to more precisely match
your CV outputs to each other or to an external reference. A digital multimeter (or other
voltage measuring device) is required.

To calibrate CV 1, first set it to output one volt with CV 1 V 1. Using a digital multi-
meter with at least millivolt precision (three digits after the decimal point), record the
measured output of CV 1 between tip and sleeve on a patch cable. Then set CV 1 to
three volts with CV 1 V 3 and measure again.

Once you have both measurements, use the observed 1V and 3V values in millivolts
as the second and third arguments to CV.CAL. For example, if you measured 0.990V
and 2.984V, enter CV.CAL 1 990 2984. (If both your measurements are within 1 or
2 millivolts already, there’s no need to run CV.CAL.)

Measure the output with CV 1 V 1 and CV 1 V 3 again and confirm the values are
closer to the expected 1.000V and 3.000V.

Repeat the above steps for CV 2-4, if desired. The calibration data is stored in flash
memory so you only need to go through this process once.

Note: The calibration adjustment is made after CV.SLEW and CV.OFF are applied, and
does not affect CV.GET or any other scene-visible values. It only affects the levels
coming out of the DAC.

102

CV.CAL.RESET

• CV.CAL.RESET n

Clear the calibration data for CV output n and return it to its default behavior, with no
calibration adjustment.

103

Generic I2C

Generic I2C ops allow querying and sending commands to any I2C enabled devices
connected to teletype. Before you can send or query you need to set the I2C address
of the device using II.A (you might want to place that in your INIT script so that the
address is set when you load a scene).

You can send up to 3 additional parameters, which can be either byte values or full
range teletype values (for something like velocity), which will get sent as 2 bytes (MSB
followed by LSB). All parameters must be of the same type - if you need to send both
byte and word values, use the bitshift ops to combine/split bytes.

No validation or transformation is applied to any of the parameters - they are send as
is. As dedicated ops are often 1-based, you might want to subtract 1 when reproducing
them with the generic ops.

There are 2 sets of query ops - one for getting regular (word) values and one for getting
byte values. If the address is not set, or if it’s set but there are no follower devices
listening at that address, query ops will return zero.

OP OP (set) (aliases) Description

IIA IIA address Set I2C address or get the
currently selected address

IIS cmd Execute the specified command
IIS1 cmd value Execute the specified command

with 1 parameter
IIS2 cmd value1
value2

Execute the specified command
with 2 parameters

IIS3 cmd value1
value2 value3

Execute the specified command
with 3 parameters

IISB1 cmd value Execute the specified command
with 1 byte parameter

IISB2 cmd
value1 value2

Execute the specified command
with 2 byte parameters

IISB3 cmd value1
value2 value3

Execute the specified command
with 3 byte parameters

IIQ cmd Execute the specified query and
get a value back

IIQ1 cmd value Execute the specified query with
1 parameter and get a value
back

IIQ2 cmd value1
value2

Execute the specified query with
2 parameters and get a value
back

IIQ3 cmd value1
value2 value3

Execute the specified query with
3 parameters and get a value
back

104

OP OP (set) (aliases) Description

IIQB1 cmd value Execute the specified query with
1 byte parameter and get a value
back

IIQB2 cmd
value1 value2

Execute the specified query with
2 byte parameters and get a
value back

IIQB3 cmd value1
value2 value3

Execute the specified query with
3 byte parameters and get a
value back

IIB cmd Execute the specified query and
get a byte value back

IIB1 cmd value Execute the specified query with
1 parameter and get a byte value
back

IIB2 cmd value1
value2

Execute the specified query with
2 parameters and get a byte
value back

IIB3 cmd value1
value2 value3

Execute the specified query with
3 parameters and get a byte
value back

IIBB1 cmd value Execute the specified query with
1 byte parameter and get a byte
value back

IIBB2 cmd
value1 value2

Execute the specified query with
2 byte parameters and get a byte
value back

IIBB3 cmd value1
value2 value3

Execute the specified query with
3 byte parameters and get a byte
value back

IIA

• IIA / IIA address

Set the I2C address to be used by the generic I2C ops. The address is -1 when not
selected or when it’s set to a value outside of the supported range.

105

Ansible

OP OP (set) (aliases) Description

ANS.G.LED x y get grid LED buffer at position x,
y

ANS.G x y ANS.G x y z get/set grid key on/off state (z)
at position x, y

ANS.G.P x y simulate grid key press at
position (x, y)

ANS.A.LED n x read arc LED buffer for ring n,
LED x clockwise from north

ANS.A ANS.A n d send arc encoder event for ring
n, delta d

ANS.APP ANS.APP x get/set active app
KR.PRE KR.PRE x return current preset / load

preset x
KR.PERIOD KR.PERIOD x get/set internal clock period
KR.PAT KR.PAT x get/set current pattern
KR.SCALE KR.SCALE x get/set current scale
KR.POS x y KR.POS x y z get/set position z for track z,

parameter y
KR.L.ST x y KR.L.ST x y z get loop start for track x,

parameter y / set to z
KR.L.LEN x y KR.L.LEN x y z get length of track x, parameter

y / set to z
KR.RES x y reset position to loop start for

track x, parameter y
KR.CV x get the current CV value for

channel x
KR.MUTE x KR.MUTE x y get/set mute state for channel x

(1 = muted, 0 = unmuted)
KR.TMUTE x toggle mute state for channel x
KR.CLK x advance the clock for channel x

(channel must have teletype
clocking enabled)

KR.PG KR.PG x get/set the active page
KR.CUE KR.CUE x get/set the cued pattern
KR.DIR KR.DIR x get/set the step direction
KR.DUR x get the current duration value for

channel x
ME.PRE ME.PRE x return current preset / load

preset x
ME.SCALE ME.SCALE x get/set current scale

106

OP OP (set) (aliases) Description

ME.PERIOD ME.PERIOD x get/set internal clock period
ME.STOP x stop channel x (0 = all)
ME.RES x reset channel x (0 = all), also

used as “start”
ME.CV x get the current CV value for

channel x
LV.PRE LV.PRE x return current preset / load

preset x
LV.RES x reset, 0 for soft reset (on next

ext. clock), 1 for hard reset
LV.POS LV.POS x get/set current position
LV.L.ST LV.L.ST x get/set loop start
LV.L.LEN LV.L.LEN x get/set loop length
LV.L.DIR LV.L.DIR x get/set loop direction
LV.CV x get the current CV value for

channel x
CY.PRE CY.PRE x return current preset / load

preset x
CY.RES x reset channel x (0 = all)
CY.POS x CY.POS x y get / set position of channel x (x

= 0 to set all), position between
0-255

CY.REV x reverse channel x (0 = all)
CY.CV x get the current CV value for

channel x
MID.SLEW t set pitch slew time in ms

(applies to all allocation styles
except FIXED)

MID.SHIFT o shift pitch CV by standard
Teletype pitch value (e.g. N 6, V
-1, etc)

ARP.HLD h 0 disables key hold mode, other
values enable

ARP.STY y set base arp style [0-7]
ARP.GT v g set voice gate length [0-127],

scaled/synced to course
divisions of voice clock

ARP.SLEW v t set voice slew time in ms
ARP.RPT v n s set voice pattern repeat, n times

[0-8], shifted by s semitones
[-24, 24]

ARP.DIV v d set voice clock divisor
(euclidean length), range [1-32]

107

OP OP (set) (aliases) Description

ARP.FIL v f set voice euclidean fill, use 1 for
straight clock division, range
[1-32]

ARP.ROT v r set voice euclidean rotation,
range [-32, 32]

ARP.ER v f d r set all euclidean rhythm
ARP.RES v reset voice clock/pattern on

next base clock tick
ARP.SHIFT v o shift voice cv by standard tt

pitch value (e.g. N 6, V -1, etc)

ANS.APP

• ANS.APP / ANS.APP x

Get or change the app that is active on Ansible. Numbering:

• 0 = levels
• 1 = cycles
• 2 = kria
• 3 = meadowphysics
• 4 = midi standard
• 5 = midi arp
• 6 = teletype expander

KR.POS

• KR.POS x y / KR.POS x y z

Set position to z for track x, parameter y.

A value of 0 for x means all tracks.

A value of 0 for y means all parameters

Parameters:

• 0 = all
• 1 = trigger
• 2 = note
• 3 = octave
• 4 = length

108

KR.PG

• KR.PG / KR.PG x

Get or change the current parameter page. Numbering:

• 0 = trigger
• 1 = ratchet
• 2 = note
• 3 = alt note
• 4 = octave
• 5 = glide
• 6 = duration
• 7 = TBD
• 8 = scale
• 9 = pattern

KR.CUE

• KR.CUE / KR.CUE x

Get or change the cued pattern. Numbered from 0.

KR.DIR

• KR.DIR / KR.DIR x

Get or change the step direction. Numbered from 0.

109

White Whale

OP OP (set) (aliases) Description

WW.PRESET x Recall preset (0-7)
WW.POS x Cut to position (0-15)
WW.SYNC x Cut to position (0-15) and hard-sync the clock (if clocked internally)
WW.START x Set the loop start position (0-15)
WW.END x Set the loop end position (0-15)
WW.PMODE x Set the loop play mode (0-5)
WW.PATTERN x Change pattern (0-15)
WW.QPATTERN x Change pattern (0-15) after current pattern ends
WW.MUTE1 x Mute trigger 1 (0 = on, 1 = mute)
WW.MUTE2 x Mute trigger 2 (0 = on, 1 = mute)
WW.MUTE3 x Mute trigger 3 (0 = on, 1 = mute)
WW.MUTE4 x Mute trigger 4 (0 = on, 1 = mute)
WW.MUTEA x Mute CV A (0 = on, 1 = mute)
WW.MUTEB x Mute CV B (0 = on, 1 = mute)

WW.PRESET

• WW.PRESET x

Set White Whale to preset x (0-7). This takes effect immediately. The current playback
position is not changed.

WW.POS

• WW.POS x

Cut immediately to position (0-15) in the currently playing pattern.

WW.SYNC

• WW.SYNC x

Cut to position (0-15) in the currently playing pattern. If White Whale is being clocked
internaly, this also hard-syncs the clock.

110

WW.START

• WW.START x

Set the loop start position (0-15). This does not impact the current playback position.
If the playback position is outside of the defined loop it will continue to step until it
enters the loop. If the start position is after the end position, the loop will wrap around
the ends of the grid.

WW.END

• WW.END x

Set the loop end position (0-15). This does not impact the current playback position. If
the playback position is outside of the defined loop it will continue to step until it enters
the loop. If the end position is before the end position, the loop will wrap around the
ends of the grid.

WW.PMODE

• WW.PMODE x

Set the loop play mode. The available modes are: 0 - forward, 1 - reverse, 2 - drunk, 3 -
random, 4 - pingpong, 5 - pingpong with repeated end points.

WW.PATTERN

• WW.PATTERN x

Change pattern. This does not impact the current playback position.

WW.QPATTERN

• WW.QPATTERN x

Change pattern (0-15) after current pattern ends

WW.MUTE1

• WW.MUTE1 x

Mute trigger 1 (0 = on, 1 = mute).

111

WW.MUTE2

• WW.MUTE2 x

Mute trigger 2 (0 = on, 1 = mute).

WW.MUTE3

• WW.MUTE3 x

Mute trigger 3 (0 = on, 1 = mute).

WW.MUTE4

• WW.MUTE4 x

Mute trigger 4 (0 = on, 1 = mute).

WW.MUTEA

• WW.MUTEA x

Mute CV A (0 = on, 1 = mute).

WW.MUTEB

• WW.MUTEB x

Mute CV B (0 = on, 1 = mute).

112

Meadowphysics

For use on the original Meadowphysics module with version 2 firmware. Reference the
Ansible ops for using Meadowphysics on the Ansible module.

OP OP (set) (aliases) Description

MP.PRESET x set Meadowphysics to preset x (indexed from 0)
MP.RESET x reset countdown for channel x (0 = all, 1-8 = individual channels)
MP.STOP x reset channel x (0 = all, 1-8 = individual channels)

113

Earthsea

OP OP (set) (aliases) Description

ES.PRESET x Recall preset x (0-7)
ES.MODE x Set pattern clock mode. (0=normal, 1=II clock)
ES.CLOCK x If II clocked, next pattern event
ES.RESET x Reset pattern to start (and start playing)
ES.PATTERN x Select playing pattern (0-15)
ES.TRANS x Transpose the current pattern
ES.STOP x Stop pattern playback.
ES.TRIPLE x Recall triple shape (1-4)
ES.MAGIC x Magic shape (1= halfspeed, 2=doublespeed, 3=linearize)
ES.CV x get the current CV value for channel x

ES.PRESET

• ES.PRESET x

Recall the preset in location x. This will stop the currently playing pattern.

ES.MODE

• ES.MODE x

Sets the pattern clock mode. Setting x to 0 sets Earthsea to use it’s internal clock.
Setting x to 1 clocks Earthsea via the ES.CLOCK command.

ES.CLOCK

• ES.CLOCK x

If Earthsea is II clocked (see ES.MODE), and x is non-zero, advance to the next pattern
event.

ES.RESET

• ES.RESET x

If x is non-zero, reset the position in the current pattern to the start and start playing.

114

ES.PATTERN

• ES.PATTERN x

Select pattern (0-15) from the current preset.

ES.TRANS

• ES.TRANS x

Apply a transposition relative to the current ‘root’ position. Integer divisions of x shift
the root note up or down a row, x modulo 5 will shift the position left or right up to 4
notes.

ES.STOP

• ES.STOP x

If x is non-zero, stop pattern playback, or stop record if currently recording.

ES.TRIPLE

• ES.TRIPLE x

Recall triple shape (1-4).

ES.MAGIC

• ES.MAGIC x

Apply one of the magic shapes, (1= halfspeed, 2=doublespeed, 3=linearize). Other
shapes are not currently available via II ops.

115

Orca

Remote commands for Orca (alternative WW firmware). For detailed info and tips on
usage please refer to the Orca manual29.

OP OP (set) (aliases) Description

OR.CLK x Advance track x (1-4)
OR.RST x Reset track x (1-4)
OR.GRST x Global reset (x can be any value)
OR.TRK x Choose track x (1-4) to be used

by OR.DIV, OR.PHASE, OR.WGT
or OR.MUTE

OR.DIV x Set divisor for selected track to
x (1-16)

OR.PHASE x Set phase for selected track to x
(0-16)

OR.WGT x Set weight for selected track to
x (1-8)

OR.MUTE x Mute trigger selected by
OR.TRK (0 = on, 1 = mute)

OR.SCALE x Select scale x (1-16)
OR.BANK x Select preset bank x (1-8)
OR.PRESET x Select preset x (1-8)
OR.RELOAD x Reload preset or bank (0 -

current preset, 1 - current bank,
2 - all banks)

OR.ROTS x Rotate scales by x (1-15)
OR.ROTW x Rotate weights by x (1-3)
OR.CVA x Select tracks for CV A where x is

a binary number representing
the tracks

OR.CVB x Select tracks for CV B where x is
a binary number representing
the tracks

OR.CLK

• OR.CLK x

Gives you the ability to clock individual tracks. The master clock will still advance all 4
tracks.

29https://github.com/scanner-darkly/monome-mods/wiki/Orca---manual#teletype-integration

116

https://github.com/scanner-darkly/monome-mods/wiki/Orca---manual#teletype-integration

OR.SCALE

• OR.SCALE x

Value of 1-16 will select scale for both CV A and CV B. To select individual scales
append their numbers, for instance, 105 will select scale 1 for CV A and scale 5 for CV
B, and 1005 will select scale 10 for CV A and scale 5 for CV B.

OR.RELOAD

• OR.RELOAD x

Abandons any unsaved changes and reloads selected presets/banks from flash. Could
be useful in I script.

OR.ROTS

• OR.ROTS x

Rotates scales up. To rotate them down set x to 16 minus the amount.

OR.ROTW

• OR.ROTW x

Rotates weights up. To rotate them down set x to 4 minus the amount.

OR.CVA

• OR.CVA x

Convert a binary number representing selected tracks (so 1001will select tracks 1 and
4, for instance) and set x to that.

OR.CVB

• OR.CVB x

Convert a binary number representing selected tracks (so 1001will select tracks 1 and
4, for instance) and set x to that.

117

Just Friends

More extensively covered in the Just Friends Documentation30.

OP OP (set) (aliases) Description

JF.ADDR x Sets JF II address (1 = primary, 2
= secondary). Use with only one
JF on the bus! Saves to JF
internal memory, so only
one-time config is needed.

JF.SEL x Sets target JF unit (1 = primary,
2 = secondary).

JF0: ... Send following JF OPs to both
units starting with selected unit.

JF1: ... Send following JF OPs to unit 1
ignoring the currently selected
unit.

JF2: ... Send following JF OPs to unit 2
ignoring the currently selected
unit.

JF.RAMP Gets value of RAMP knob.
JF.CURVE Gets value of CURVE knob.
JF.FM Gets value of FM knob.
JF.INTONE Gets value of INTONE knob and

CV offset.
JF.TIME Gets value of TIME knob and CV

offset.
JF.SPEED Gets value of SPEED switch (1 =

sound, 0 = shape).
JF.TSC Gets value of MODE switch (0 =

transient, 1 = sustain, 2 = cycle).
JF.TR x y Simulate a TRIGGER input. x is

channel (0 = all primary JF
channels, 1..6 = primary JF,
7..12 = secondary JF, -1 = all
channels both JF) and y is state
(0 or 1)

JF.RMODE x Set the RUN state of Just
Friends when no physical jack is
present. (0 = run off, non-zero =
run on)

30https://github.com/whimsicalraps/Just-Friends/blob/main/Just-Type.md

118

https://github.com/whimsicalraps/Just-Friends/blob/main/Just-Type.md

OP OP (set) (aliases) Description

JF.RUN x Send a ‘voltage’ to the RUN
input. Requires JF.RMODE 1 to
have been executed, or a
physical cable in JF’s input.
Thus Just Friend’s RUN modes
are accessible without needing a
physical cable & control voltage
to set the RUN parameter. use
JF.RUN V x to set to x volts.
The expected range is V -5 to V 5

JF.SHIFT x Shifts the transposition of Just
Friends, regardless of speed
setting. Shifting by V 1 doubles
the frequency in sound, or
doubles the rate in shape. x =
pitch, use N x for semitones, or
V y for octaves.

JF.VTR x y Like JF.TR with added volume
control. Velocity is scaled with
volts, so try V 5 for an output
trigger of 5 volts. Channels
remember their latest velocity
setting and apply it regardless of
TRIGGER origin (digital or
physical). x = channel, 0 sets all
channels. y = velocity, amplitude
of output in volts. eg JF.VTR 1
V 4.

JF.TUNE x y z Adjust the tuning ratios used by
the INTONE control. x = channel,
y = numerator (set the multiplier
for the tuning ratio), z =
denominator (set the divisor for
the tuning ratio). JF.TUNE 0 0
0 resets to default ratios.

JF.MODE x Set the current choice of
standard functionality, or Just
Type alternate modes (Speed
switch to Sound for Synth,
Shape for Geode). You’ll likely
want to put JF.MODE x in your
Teletype INIT scripts. x =
nonzero activates alternative
modes. 0 restores normal.

119

OP OP (set) (aliases) Description

JF.VOX x y z Synth mode: create a note at the
specified channel, of the defined
pitch & velocity. All channels can
be set simultaneously with a
chan value of 0. x = channel, y =
pitch relative to C3, z = velocity
(like JF.VTR). Geode mode:
Create a stream of rhythmic
envelopes on the named
channel. x = channel, y =
division, z = number of repeats.

JF.NOTE x y Synth: polyphonically allocated
note sequencing. Works as
JF.VOX with chan selected
automatically. Free voices will
be taken first. If all voices are
busy, will steal from the voice
which has been active the
longest. x = pitch relative to C3,
y = velocity. Geode: works as
JF.VOX with dynamic allocation
of channel. Assigns the
rhythmic stream to the oldest
unused channel, or if all are busy,
the longest running channel. x =
division, y = number of repeats.

JF.POLY x y As JF.NOTE but across dual JF.
Switches between primary and
secondary units every 6 notes or
until reset using
JF.POLY.RESET.

JF.POLY.RESET Resets JF.POLY note count.
JF.PITCH x y Change pitch without

retriggering. x = channel, y =
pitch relative to C3.

JF.GOD x Redefines C3 to align with the
‘God’ note. x = 0 sets A to 440, x
= 1 sets A to 432.

JF.TICK x Sets the underlying timebase of
the Geode. x = clock. 0 resets
the timebase to the start of
measure. 1 to 48 shall be sent
repetitively. The value
representing ticks per measure.
49 to 255 sets beats-per-minute
and resets the timebase to start
of measure.

120

OP OP (set) (aliases) Description

JF.QT x When non-zero, all events are
queued & delayed until the next
quantize event occurs. Using
values that don’t align with the
division of rhythmic streams will
cause irregular patterns to
unfold. Set to 0 to deactivate
quantization. x = division, 0
deactivates quantization, 1 to 32
sets the subdivision & activates
quantization.

121

16n

The 16n Faderbank is an open-source controller that can be polled by the Teletype to
read the positions of its 16 sliders.

OP OP (set) (aliases) Description

FADER x FB Reads the value of the FADER
slider x; default return range is
from 0 to 16383. Up to four
Faderbanks can be addressed; x
value between 1 and 16
correspond to Faderbank 1, x
between 17 and 32 to Faderbank
2, etc…

FADER.SCALE x y
z

FB.S Set static scaling of the FADER
x to between min and max.

FADER.CAL.MIN x FB.C.MINReads FADER x minimum
position and assigns a zero
value

FADER.CAL.MAX x FB.C.MAXReads FADER x maximum
position and assigns the
maximum point

FADER.CAL.RESET
x

FB.C.R Resets the calibration for FADER
x

FADER.CAL.MIN

• FADER.CAL.MIN x

• alias: FB.C.MIN

1. Slide FADER x all the way down to the bottom
2. Execute FADER.CAL.MIN x from the live terminal
3. Call FADER x and confirm the 0 result

FADER.CAL.MAX

• FADER.CAL.MAX x

• alias: FB.C.MAX

1. Slide FADER x all the way up to the top
2. Execute FADER.CAL.MAX x from the live terminal
3. Call FADER x and verify that the result is 16383

122

ER-301

The Orthogonal Devices ER-301 Sound Computer is a voltage-controllable canvas for
digital signal processing algorithms available from Orthogonal Devices. It can commu-
nicate with the Teletype to send up to 100 triggers and 100 CV values per device. Up
to three devices are software-selectable and correlate to outputs up to 300.

OP OP (set) (aliases) Description

SC.TR x y Set trigger output for the ER-301 virtual output x to y (0-1)
SC.TR.POL x y Set polarity of trigger for the ER-301 virtual output x to y (0-1)
SC.TR.TIME x y Set the pulse time for the ER-301 virtual trigger x to y in ms
SC.TR.TOG x Flip the state for the ER-301 virtual trigger output x
SC.TR.PULSE x SC.TR.P Pulse the ER-301 virtual trigger output x
SC.CV x y CV target value for the ER-301 virtual output x to value y
SC.CV.OFF x y CV offset added to the ER-301 virtual output x
SC.CV.SET x Set CV value for the ER-301 virtual output x
SC.CV.SLEW x y Set the CV slew time for the ER-301 virtual output x in ms

123

TELEXi

The TELEXi (or TXi) is an input expander that adds 4 IN jacks and 4 PARAM knobs to
the Teletype. There are jumpers on the back so you can hook more than one TXi to
your Teletype simultaneously.

Inputs added to the system by the TELEX modules are addressed sequentially: 1-4 are
on your first module of any type, 5-8 are on the second, 9-12 on the third, and so on. A
few of the commands reference the module by its unit number – but those are rare.

OP OP (set) (aliases) Description

TI.PARAM x TI.PRM reads the value of PARAM knob
x; default return range is from 0
to 16383; return range can be
altered by the TI.PARAM.MAP
command

TI.PARAM.QT x TI.PRM.QTreturn the quantized value for
PARAM knob x using the scale
set by TI.PARAM.SCALE;
default return range is from 0 to
16383

TI.PARAM.N x TI.PRM.Nreturn the quantized note
number for PARAM knob x using
the scale set by
TI.PARAM.SCALE

TI.PARAM.SCALE
x

TI.PRM.SCALEselect scale # y for PARAM knob
x; scales listed in full description

TI.PARAM.MAP x
y z

TI.PRM.MAPmaps the PARAM values for
input x across the range y - z
(defaults 0-16383)

TI.IN x reads the value of IN jack x;
default return range is from
-16384 to 16383 - representing
-10V to +10V; return range can
be altered by the TI.IN.MAP
command

TI.IN.QT x return the quantized value for IN
jack x using the scale set by
TI.IN.SCALE; default return
range is from -16384 to 16383 -
representing -10V to +10V

TI.IN.N x return the quantized note
number for IN jack x using the
scale set by TI.IN.SCALE

TI.IN.SCALE x select scale # y for IN jack x;
scales listed in full description

124

OP OP (set) (aliases) Description

TI.IN.MAP x y z maps the IN values for input jack
x across the range y - z (default
range is -16384 to 16383 -
representing -10V to +10V)

TI.PARAM.INIT x TI.PRM.INITinitializes PARAM knob x back to
the default boot settings and
behaviors; neutralizes mapping
(but not calibration)

TI.IN.INIT x initializes IN jack x back to the
default boot settings and
behaviors; neutralizes mapping
(but not calibration)

TI.INIT d initializes all of the PARAM and
IN inputs for device number d
(1-8)

TI.PARAM.CALIB
x y

TI.PRM.CALIBcalibrates the scaling for PARAM
knob x; y of 0 sets the bottom
bound; y of 1 sets the top bound

TI.IN.CALIB x y calibrates the scaling for IN jack
x; y of -1 sets the -10V point; y
of 0 sets the 0V point; y of 1
sets the +10V point

TI.STORE d stores the calibration data for
TXi number d (1-8) to its internal
flash memory

TI.RESET d resets the calibration data for
TXi number d (1-8) to its factory
defaults (no calibration)

TI.PARAM.SCALE

• TI.PARAM.SCALE x
• alias: TI.PRM.SCALE

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty

125

7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977)
& David Beardsley’s scale of ‘Science Friction’

8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TI.PARAM.MAP

• TI.PARAM.MAP x y z
• alias: TI.PRM.MAP

If you would like to have a PARAM knob values over a specific range, you can offload
the processing for this to the TXo by mapping the range of the potentiometer using the
MAP command. It works a lot like the MAP operator, but does the heavy lifting on the
TXi, saving you space in your code and cycles on your processor.

For instance, let’s have the first knob return a range from 0 to 100.

TI.PARAM.MAP 1 0 100

You can reset the mapping by either calling the map command with the default range
or by using the INIT command (TO.PARAM.INIT 1).

TI.IN.SCALE

• TI.IN.SCALE x

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977)

& David Beardsley’s scale of ‘Science Friction’
8. Carlos Super Just

126

9. Kurzweil “Empirical Arabic”
10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TI.PARAM.CALIB

• TI.PARAM.CALIB x y
• alias: TI.PRM.CALIB

You can calibrate your PARAM knob by using this command. The steps for full calibra-
tion are as follows:

1. Turn the PARAM knob x all the way to the left
2. Send the command ‘TI.PARAM.CALIBRATE x 0’
3. Turn the PARAM knob x all the way to the right
4. Send the command ‘TI.PARAM.CALIBRATE x 1’

Don’t forget to call theTI.STORE command to save your calibration between sessions.

TI.IN.CALIB

• TI.IN.CALIB x y

You can calibrate your IN jack to external voltages by using this command. The steps
for full calibration are as follows:

1. Send a -10V signal to the input x
2. Send the command ‘TI.IN.CALIBRATE x -1’
3. Send a 0V signal to the input x
4. Send the command ‘TI.IN.CALIBRATE x 0’
5. Send a 10V signal to the input x
6. Send the command ‘TI.IN.CALIBRATE x 1’

Don’t forget to call theTI.STORE command to save your calibration between sessions.

127

TELEXo

The TELEXo (or TXo) is an output expander that adds an additional 4 Trigger and 4 CV
jacks to the Teletype. There are jumpers on the back so you can hook more than one
TXo to your Teletype simultaneously.

Outputs added to the system by the TELEX modules are addressed sequentially: 1-4
are on your first module of any type, 5-8 are on the second, 9-12 on the third, and so on.
A few of the commands reference the module by its unit number – but those are rare.

Unlike the Teletype’s equivalent operators, the TXo does not have get commands for its
functions. This was intentional as these commands eat up processor and bus-space.
While they may be added in the future, as of now you cannot poll the TXo for the current
state of its various operators.

OP OP (set) (aliases) Description

TO.TR x y sets the TR value for output x to
y (0/1)

TO.TR.TOG x toggles the TR value for output x
TO.TR.PULSE x TO.TR.P pulses the TR value for output x

for the duration set by
TO.TR.TIME/S/M

TO.TR.PULSE.DIV
x y

TO.TR.P.DIVsets the clock division factor for
TR output x to y

TO.TR.PULSE.MUTE
x y

TO.TR.P.MUTEmutes or un-mutes TR output x;
y is 1 (mute) or 0 (un-mute)

TO.TR.TIME x y sets the time for TR.PULSE on
output n; y in milliseconds

TO.TR.TIME.S x y sets the time for TR.PULSE on
output n; y in seconds

TO.TR.TIME.M x y sets the time for TR.PULSE on
output n; y in minutes

TO.TR.WIDTH x y sets the time for TR.PULSE on
output n based on the width of
its current metronomic value; y
in percentage (0-100)

TO.TR.POL x y sets the polarity for TR output n
TO.TR.M.ACT x y sets the active status for the

independent metronome for
output x to y (0/1); default 0
(disabled)

TO.TR.M x y sets the independent
metronome interval for output x
to y in milliseconds; default
1000

128

OP OP (set) (aliases) Description

TO.TR.M.S x y sets the independent
metronome interval for output x
to y in seconds; default 1

TO.TR.M.M x y sets the independent
metronome interval for output x
to y in minutes

TO.TR.M.BPM x y sets the independent
metronome interval for output x
to y in Beats Per Minute

TO.TR.M.COUNT x
y

sets the number of repeats
before deactivating for output x
to y; default 0 (infinity)

TO.TR.M.MUL x y multiplies the M rate on TR
output x by y; y defaults to 1 -
no multiplication

TO.TR.M.SYNC x synchronizes the PULSE for
metronome on TR output
number x

TO.M.ACT d y sets the active status for the 4
independent metronomes on
device d (1-8) to y (0/1); default
0 (disabled)

TO.M d y sets the 4 independent
metronome intervals for device
d (1-8) to y in milliseconds;
default 1000

TO.M.S d y sets the 4 independent
metronome intervals for device
d to y in seconds; default 1

TO.M.M d y sets the 4 independent
metronome intervals for device
d to y in minutes

TO.M.BPM d y sets the 4 independent
metronome intervals for device
d to y in Beats Per Minute

TO.M.COUNT d y sets the number of repeats
before deactivating for the 4
metronomes on device d to y;
default 0 (infinity)

TO.M.SYNC d synchronizes the 4 metronomes
for device number d (1-8)

TO.CV x CV target output x; y values are
bipolar (-16384 to +16383) and
map to -10 to +10

TO.CV.SLEW x y set the slew amount for output
x; y in milliseconds

129

OP OP (set) (aliases) Description

TO.CV.SLEW.S x y set the slew amount for output
x; y in seconds

TO.CV.SLEW.M x y set the slew amount for output
x; y in minutes

TO.CV.SET x y set the CV for output x (ignoring
SLEW); y values are bipolar
(-16384 to +16383) and map to
-10 to +10

TO.CV.OFF x y set the CV offset for output x; y
values are added at the final
stage

TO.CV.QT x y CV target output x; y is
quantized to output’s current
CV.SCALE

TO.CV.QT.SET x y set the CV for output x (ignoring
SLEW); y is quantized to output’s
current CV.SCALE

TO.CV.N x y target the CV to note y for
output x; y is indexed in the
output’s current CV.SCALE

TO.CV.N.SET x y set the CV to note y for output x;
y is indexed in the output’s
current CV.SCALE (ignoring
SLEW)

TO.CV.SCALE x y select scale # y for CV output x;
scales listed in full description

TO.CV.LOG x y translates the output for CV
output x to logarithmic mode y;
y defaults to 0 (off); mode 1 is
for 0-16384 (0V-10V), mode 2 is
for 0-8192 (0V-5V), mode 3 is for
0-4096 (0V-2.5V), etc.

TO.CV.CALIB x Locks the current offset
(CV.OFF) as a calibration offset
and saves it to persist between
power cycles for output x.

TO.CV.RESET x Clears the calibration offset for
output x

TO.OSC x y Targets oscillation for CV output
x to y

TO.OSC.SET x y set oscillation for CV output x to
y (ignores slew)

TO.OSC.QT x y targets oscillation for CV output
x to y

130

OP OP (set) (aliases) Description

TO.OSC.QT.SET x
y

set oscillation for CV output x to
y, quantized to the current scale
(ignores slew)

TO.OSC.N x y targets oscillation for CV output
x to note y

TO.OSC.N.SET x y sets oscillation for CV output x
to note y (ignores slew)

TO.OSC.FQ x y targets oscillation for CV output
x to frequency y in Hertz

TO.OSC.FQ.SET x
y

targets oscillation for CV output
x to frequency y in Hertz
(ignores slew)

TO.OSC.LFO x y Targets oscillation for CV output
x to LFO frequency y in
millihertz

TO.OSC.LFO.SET
x y

Targets oscillation for CV output
x to LFO frequency y in
millihertz (ignores slew)

TO.OSC.CYC x y targets the oscillator cycle
length to y for CV output x with
the portamento rate determined
by the TO.OSC.SLEW value; y is
in milliseconds

TO.OSC.CYC.SET
x y

sets the oscillator cycle length
to y for CV output x (ignores
CV.OSC.SLEW); y is in
milliseconds

TO.OSC.CYC.S x y targets the oscillator cycle
length to y for CV output x with
the portamento rate determined
by the TO.OSC.SLEW value; y is
in seconds

TO.OSC.CYC.S.SET
x y

sets the oscillator cycle length
to y for CV output x (ignores
CV.OSC.SLEW); y is in seconds

TO.OSC.CYC.M x y targets the oscillator cycle
length to y for CV output x with
the portamento rate determined
by the TO.OSC.SLEW value; y is
in minutes

TO.OSC.CYC.M.SET
x y

sets the oscillator cycle length
to y for CV output x (ignores
CV.OSC.SLEW); y is in minutes

TO.OSC.SCALE x y select scale # y for CV output x;
scales listed in full description

131

OP OP (set) (aliases) Description

TO.OSC.WAVE x y set the waveform for output x to
y; y range is 0-4500, blending
between 45 waveforms

TO.OSC.RECT x y rectifies the polarity of the
oscillator for output x to y; 0 is
no rectification, +/-1 is partial
rectification, +/-2 is full
rectification

TO.OSC.WIDTH x y sets the width of the pulse wave
on output x to y; y is a
percentage of total width (0 to
100); only affects waveform
3000

TO.OSC.SYNC x resets the phase of the oscillator
on CV output x (relative to
TO.OSC.PHASE)

TO.OSC.PHASE x y sets the phase offset of the
oscillator on CV output x to y (0
to 16383); y is the range of one
cycle

TO.OSC.SLEW x y sets the frequency slew time
(portamento) for the oscillator
on CV output x to y; y in
milliseconds

TO.OSC.SLEW.S x
y

sets the frequency slew time
(portamento) for the oscillator
on CV output x to y; y in
seconds

TO.OSC.SLEW.M x
y

sets the frequency slew time
(portamento) for the oscillator
on CV output x to y; y in minutes

TO.OSC.CTR x y centers the oscillation on CV
output x to y; y values are
bipolar (-16384 to +16383) and
map to -10 to +10

TO.ENV.ACT x y activates/deactivates the AD
envelope generator for the CV
output x; y turns the envelope
generator off (0 - default) or on
(1); CV amplitude is used as the
peak for the envelope and needs
to be > 0 for the envelope to be
perceivable

TO.ENV x y trigger the attack stage of output
x when y changes to 1, or decay
stage when it changes to 0

132

OP OP (set) (aliases) Description

TO.ENV.TRIG x triggers the envelope at CV
output x to cycle; CV amplitude
is used as the peak for the
envelope and needs to be > 0
for the envelope to be
perceivable

TO.ENV.ATT x y set the envelope attack time to y
for CV output x; y in
milliseconds (default 12 ms)

TO.ENV.ATT.S x y set the envelope attack time to y
for CV output x; y in seconds

TO.ENV.ATT.M x y set the envelope attack time to y
for CV output x; y in minutes

TO.ENV.DEC x y set the envelope decay time to y
for CV output x; y in
milliseconds (default 250 ms)

TO.ENV.DEC.S x y set the envelope decay time to y
for CV output x; y in seconds

TO.ENV.DEC.M x y set the envelope decay time to y
for CV output x; y in minutes

TO.ENV.EOR x n at the end of rise of CV output x,
fires a PULSE to the trigget
output n

TO.ENV.EOC x n at the end of cycle of CV output
x, fires a PULSE to the trigget
output n

TO.ENV.LOOP x y causes the envelope on CV
output x to loop for y times

TO.TR.INIT x initializes TR output x back to
the default boot settings and
behaviors; neutralizes
metronomes, dividers, pulse
counters, etc.

TO.CV.INIT x initializes CV output x back to
the default boot settings and
behaviors; neutralizes offsets,
slews, envelopes, oscillation,
etc.

TO.INIT d initializes all of the TR and CV
outputs for device number d
(1-8)

TO.KILL d cancels all TR pulses and CV
slews for device number d (1-8)

133

TO.TR.PULSE.DIV

• TO.TR.PULSE.DIV x y
• alias: TO.TR.P.DIV

The pulse divider will output one trigger pulse every y pulse commands. For example,
setting the DIV factor to 2 like this:

TO.TR.P.DIV 1 2

Will cause every other TO.TR.P 1 command to emit a pulse.

Reset it to one (TO.TR.P.DIV 1 1) or initialize the output (TO.TR.INIT 1) to return
to the default behavior.

TO.TR.WIDTH

• TO.TR.WIDTH x y

The actual time value for the trigger pulse when set by the WIDTH command is rela-
tive to the current value for TO.TR.M. Changes to TO.TR.M will change the duration
of TR.PULSE when using the WIDTH mode to set its value. Values for y are set in
percentage (0-100).

For example:

TO.TR.M 1 1000
TO.TR.WIDTH 1 50

The length of a TR.PULSE is now 500ms.

TO.TR.M 1 500

The length of a TR.PULSE is now 250ms. Note that you don’t need to use the width
command again as it automatically tracks the value for TO.TR.M.

TO.TR.M.ACT

• TO.TR.M.ACT x y

Each TR output has its own independent metronome that will execute a TR.PULSE at
a specified interval. The ACT command enables (1) or disables (0) the metronome.

134

TO.TR.M.COUNT

• TO.TR.M.COUNT x y

This allows for setting a limit to the number of times TO.TR.M will PULSE when active
before automatically disabling itself. For example, let’s set it to pulse 5 times with
500ms between pulses:

TO.TR.M 1 500
TO.TR.M.COUNT 1 5

Now, each time we activate it, the metronome will pulse 5 times - each a half-second
apart.

TO.TR.M.ACT 1 1

PULSE … PULSE … PULSE … PULSE … PULSE.

The metronome is now disabled after pulsing five times. If you call ACT again, it will
emit five more pulses.

To reset, either set your COUNT to zero (TO.TR.M.COUNT 1 0) or call init on the output
(TO.TR.INIT 1 1).

TO.TR.M.MUL

• TO.TR.M.MUL x y

The following example will cause 2 against 3 patterns to pulse out of TO.TR outputs
3 and 4.

TO.TR.M.MUL 3 2
TO.TR.M.MUL 4 3
L 3 4: TO.TR.M.ACT I 1

TO.M.SYNC

• TO.M.SYNC d

This command causes the TXo at device d to synchronize all of its independent
metronomes to the moment it receives the command. Each will then continue to pulse
at its own independent M rate.

TO.CV.SCALE

• TO.CV.SCALE x y

135

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977)

& David Beardsley’s scale of ‘Science Friction’
8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TO.CV.LOG

• TO.CV.LOG x y

The following example creates an envelope that ramps to 5V over a logarithmic curve:

TO.CV.SET 1 V 5
TO.CV.LOG 1 2
TO.ENV.ATT 1 500
TO.ENV.DEC.S 1 2
TO.ENV.ACT 1 1

When triggered (TO.ENV.TRIG 1), the envelope will rise to 5V over a half a second and
then decay back to zero over two seconds. The curve used is 2, which covers 0V-5V.
If a curve is too small for the range being covered, values above the range will be limited
to the range’s ceiling. In the above example, voltages above 5V will all return as 5V.

TO.CV.CALIB

• TO.CV.CALIB x

To calibrate your TXo outputs, follow these steps. Before you start, let your expander
warm up for a few minutes. It won’t take long - but you want to make sure that it is
calibrated at a more representative temperature.
Then, first adjust your offset (CV.OFF) until the output is at zero volts (0). For example:

136

CV.OFF 1 8

Once that output measures at zero volts, you want to lock it in as the calibration by
calling the following operator:

CV.CALIB 1

You will find that the offset is now zero, but the output is at the value that you targeted
during your prior adjustment. To reset to normal (and forget this calibration offset),
use the TO.CV.RESET command.

TO.OSC

• TO.OSC x y

Targets oscillation for CV output x to y with the portamento rate determined by the
TO.OSC.SLEW value. y is 1V/oct translated from the standard range (1-16384). A
value of 0 disables oscillation; CV amplitude is used as the peak for oscillation and
needs to be > 0 for it to be perceivable.
Setting an OSC frequency greater than zero for a CV output will start that output oscil-
lating. It will swing its voltage between to the current CV value and its polar opposite.
For example:

TO.CV 1 V 5
TO.OSC 1 N 69

This will emit the audio-rate note A (at 440Hz) swinging from ‘+5V’ to ‘-5V’. TheCV value
acts as an amplitude control. For example:

TO.CV.SLEW.M 1 1
TO.CV 1 V 10

This will cause the oscillations to gradually increase in amplitude from 5V to 10V over
a period of one minute.
IMPORANT: if you do not set a CV value, the oscillator will not emit a signal.
If you want to go back to regular CV behavior, you need to set the oscillation frequency
to zero. E.g. TO.OSC 1 0. You can also initialize the CV output with TO.CV.INIT 1,
which resets all of its settings back to start-up default.

TO.OSC.SET

• TO.OSC.SET x y

Set oscillation for CV output x to y (ignores CV.OSC.SLEW.) y is 1V/oct translated
from the standard range (1-16384); a value of 0 disables oscillation. CV amplitude is
used as the peak for oscillation and needs to be > 0 for it to be perceivable.

137

TO.OSC.QT

• TO.OSC.QT x y

Targets oscillation for CV output x to y with the portamento rate determined by the
TO.OSC.SLEW value. y is 1V/oct translated from the standard range (1-16384) and
quantized to current OSC.SCALE. A value of 0 disables oscillation; CV amplitude is
used as the peak for oscillation and needs to be > 0 for it to be perceivable.

TO.OSC.QT.SET

• TO.OSC.QT.SET x y

Set oscillation for CV output x to the 1V/oct value y (ignores CV.OSC.SLEW.) y
is 1v/oct translated from the standard range (1-16384) and quantized to current
OSC.SCALE. A value of 0 disables oscillation; CV amplitude is used as the peak for
oscillation and needs to be > 0 for it to be perceivable.

TO.OSC.N

• TO.OSC.N x y

Targets oscillation for CV output x to note y with the portamento rate determined by
the TO.OSC.SLEW value. See quantization scale reference for y; CV amplitude is used
as the peak for oscillation and needs to be > 0 for it to be perceivable.

TO.OSC.N.SET

• TO.OSC.N.SET x y

Sets oscillation for CV output x to note y (ignores CV.OSC.SLEW.) See quantization
scale reference for y; CV amplitude is used as the peak for oscillation and needs to be
> 0 for it to be perceivable.

TO.OSC.FQ

• TO.OSC.FQ x y

Targets oscillation for CV output x to frequency y with the portamento rate determined
by the TO.OSC.SLEW value. y is in Hz; a value of 0 disables oscillation. CV amplitude
is used as the peak for oscillation and needs to be > 0 for it to be perceivable.

138

TO.OSC.FQ.SET

• TO.OSC.FQ.SET x y

Sets oscillation for CV output x to frequency y (ignores CV.OSC.SLEW.) y is in Hz; a
value of 0 disables oscillation. CV amplitude is used as the peak for oscillation and
needs to be > 0 for it to be perceivable.

TO.OSC.LFO

• TO.OSC.LFO x y

Targets oscillation for CV output x to LFO frequency y with the portamento rate de-
termined by the TO.OSC.SLEW value. y is in mHz (millihertz: 10^-3 Hz); a value of 0
disables oscillation. CV amplitude is used as the peak for oscillation and needs to be
> 0 for it to be perceivable.

TO.OSC.LFO.SET

• TO.OSC.LFO.SET x y

Sets oscillation for CV output x to LFO frequency y (ignores CV.OSC.SLEW.) y is in
mHz (millihertz: 10^-3 Hz); a value of 0 disables oscillation. CV amplitude is used as
the peak for oscillation and needs to be > 0 for it to be perceivable.

TO.OSC.SCALE

• TO.OSC.SCALE x y

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977)

& David Beardsley’s scale of ‘Science Friction’
8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4

139

11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TO.OSC.WAVE

• TO.OSC.WAVE x y

There are 45 different waveforms, values translate to sine (0), triangle (100), saw (200),
pulse (300) all the way to random/noise (4500). Oscillator shape between values is a
blend of the pure waveforms.

TO.OSC.RECT

• TO.OSC.RECT x y

The rectification command performs a couple of levels of rectification based on how
you have it set. The following values for y work as follows:

• y = 2: “full-positive” - inverts negative values, making them positive
• y = 1: “half-positive” - omits all negative values (values below zero are set to

zero)
• y = 0: no rectification (default)
• y = -1: “half-negative” - omits all positive values (values above zero are set to

zero)
• y = -2: “full-negative” - inverts positive values, making them negative

TO.OSC.SLEW

• TO.OSC.SLEW x y

This parameter acts as a frequency slew for the targeted CV output. It allows you to
gradually slide from one frequency to another, creating a portamento like effect. It is
also great for smoothing transitions between different LFO rates on the oscillator. For
example:

TO.CV 1 V 5
TO.OSC.SLEW 1 30000
TO.OSC.LFO.SET 1 1000
TO.OSC.LFO 1 100

This will start an LFO on CV 1 with a rate of 1000mHz. Then, over the next 30 seconds,
it will gradually decrease in rate to 100mHz.

140

TO.OSC.CTR

• TO.OSC.CTR x y

For example, to create a sine wave that is centered at 2.5V and swings up to +5V and
down to 0V, you would do this:

TO.CV 1 VV 250
TO.OSC.CTR 1 VV 250
TO.OSC.LFO 1 500

TO.ENV.ACT

• TO.ENV.ACT x y

This setting activates (1) or deactivates (0) the envelope generator on CV output y. The
envelope generator is dependent on the current voltage setting for the output. Upon
activation, the targeted output will go to zero. Then, when triggered (TO.ENV.TRIG), it
will ramp the voltage from zero to the currently set peak voltage (TO.CV) over the attack
time (TO.ENV.ATT) and then decay back to zero over the decay time (TO.ENV.DEC).
For example:

TO.CV.SET 1 V 8
TO.ENV.ACT 1 1
TO.ENV.ATT.S 1 1
TO.ENV.DEC.S 1 30

This will initialize the CV 1 output to have an envelope that will ramp to +8V over one
second and decay back to zero over thirty seconds. To trigger the envelope, you need
to send the trigger command TO.ENV.TRIG 1. Envelopes currently re-trigger from
the start of the cycle.

To return your CV output to normal function, either deactivate the envelope
(TO.ENV.ACT 1 0) or reinitialize the output (TO.CV.INIT 1).

TO.ENV

• TO.ENV x y

This parameter essentially allows output x to act as a gate between the 0 and 1 state.
Changing this value from 0 to 1 causes the envelope to trigger the attack phase and
hold at the peak CV value; changing this value from 1 to 0 causes the decay stage of
the envelope to be triggered.

141

TO.ENV.EOR

• TO.ENV.EOR x n

Fires a PULSE at the End of Rise to the unit-local trigger output n for the envelope on
CV output x; n refers to trigger output 1-4 on the same TXo as CV output x.

The most important thing to know with this operator is that you can only cause the EOR
trigger to fire on the same device as the TXo with the envelope. For this command, the
outputs are numbered LOCALLY to the unit with the envelope.

For example, if you have an envelope running on your second TXo, you can only send
the EOR pulse to the four outputs on that device:

TO.ENV.EOR 5 1

This will cause the first output on TXo #2 (TO.TR 5) to pulse after the envelope’s attack
segment.

TO.ENV.EOC

• TO.ENV.EOC x n

Fires a PULSE at the End of Cycle to the unit-local trigger output n for the envelope on
CV output x. n refers to trigger output 1-4 on the same TXo as CV output ‘y’.

The most important thing to know with this operator is that you can only cause the EOC
trigger to fire on the same device as the TXo with the envelope. For this command, the
outputs are numbered LOCALLY to the unit with the envelope.

For example, if you have an envelope running on your second TXo, you can only send
the EOC pulse to the four outputs on that device:

TO.ENV.EOC 5 1

This will cause the first output on TXo #2 (TO.TR 5) to pulse after the envelope’s decay
segment.

TO.ENV.LOOP

• TO.ENV.LOOP x y

Causes the envelope onCV outputx to loop fory times. Ay of0will cause the envelope
to loop infinitely; setting y to 1 (default) disables looping and (if currently looping) will
cause it to finish its current cycle and cease.

142

Crow

OP OP (set) (aliases) Description

CROW.SEL x Sets target crow unit (1
(default), to 4).

CROWN: ... Send following CROW OPs to all
units starting with selected unit.

CROW1: ... Send following CROW OPs to
unit 1 ignoring the currently
selected unit.

CROW2: ... Send following CROW OPs to
unit 2 ignoring the currently
selected unit.

CROW3: ... Send following CROW OPs to
unit 3 ignoring the currently
selected unit.

CROW4: ... Send following CROW OPs to
unit 4 ignoring the currently
selected unit.

CROW.V x y Sets output x to value y. Use V
y for volts.

CROW.SLEW x y Sets output x slew rate to y
milliseconds.

CROW.C1 x Calls the function
ii.self.call1(x) on crow.

CROW.C2 x y Calls the function
ii.self.call2(x, y) on
crow.

CROW.C3 x y z Calls the function
ii.self.call3(x, y, z)
on crow.

CROW.C4 x y z t Calls the function
ii.self.call4(x, y, z,
t) on crow.

CROW.RST Calls the function
crow.reset() returning crow
to default state.

CROW.PULSE x y z
t

Creates a trigger pulse on output
x with duration y (ms) to voltage
z with polarity t.

CROW.AR x y z t Creates an envelope on output
x, rising in y ms, falling in z ms,
and reaching height t.

143

OP OP (set) (aliases) Description

CROW.LFO x y z t Starts an envelope on output x
at rate y where 0 = 1Hz with
1v/octave scaling. z sets
amplitude and t sets skew for
assymetrical triangle waves.

CROW.IN x Gets voltage at input x.
CROW.OUT x Gets voltage of output x.
CROW.Q0 Returns the result of calling the

function
crow.self.query0().

CROW.Q1 x Returns the result of calling the
function
crow.self.query1(x).

CROW.Q2 x y Returns the result of calling the
function
crow.self.query2(x, y).

CROW.Q3 x y z Returns the result of calling the
function
crow.self.query3(x, y,
z).

144

W/

More extensively covered in the W/ Documentation31.

OP OP (set) (aliases) Description

WS.PLAY x Set playback state and direction.
0 stops playback. 1 sets forward
motion, while -1 plays in reverse

WS.REC x Set recording mode. 0 is
playback only. 1 sets overdub
mode for additive recording. -1
sets overwrite mode to replace
the tape with your input

WS.CUE x Go to a cuepoint relative to the
playhead position. 0 retriggers
the current location. 1 jumps to
the next cue forward. -1 jumps
to the previous cue in the
reverse. These actions are
relative to playback direction
such that 0 always retriggers the
most recently passed location

WS.LOOP x Set the loop state on/off. 0 is
off. Any other value turns loop
on

31https://www.whimsicalraps.com/pages/w-type

145

https://www.whimsicalraps.com/pages/w-type

W/2.0

More extensively covered in the W/ Documentation32.

There are separate ops for each supported algorithm: delay, synth, tape. Two units
can be connected using a different i2c address (refer to the official documentation for
more details). The following section describes ops that control which unit is selected.
These ops apply to all algorithms.

OP OP (set) (aliases) Description

W/.SEL x Sets target W/2.0 unit (1 = primary, 2 = secondary).
W/1: ... Send following W/2.0 OPs to unit 1 ignoring the currently selected unit.
W/2: ... Send following W/2.0 OPs to unit 2 ignoring the currently selected unit.

32https://www.whimsicalraps.com/pages/w-type

146

https://www.whimsicalraps.com/pages/w-type

W/2.0 tape

Tape mode of W/ eurorack module.

More extensively covered in the W/ Documentation33.

OP OP (set) (aliases) Description

W/T.REC active Sets recording state to active
(s8)

W/T.PLAY
playback

Set the playback state. -1 will
flip playback direction (s8)

W/T.REV Reverse the direction of
playback

W/T.SPEED speed
deno

Set speed as a rate, or ratio.
Negative values are reverse
(s16V)

W/T.FREQ freq Set speed as a frequency
(s16V) style value. Maintains
reverse state

W/T.ERASE.LVL
level

Strength of erase head when
recording. 0 is overdub, 1 is
overwrite. Opposite of feedback
(s16V)

W/T.MONITOR.LVL
gain

Level of input passed directly to
output (s16V)

W/T.REC.LVL
gain

Level of input material recorded
to tape (s16V)

W/T.ECHOMODE
is_echo

Set to 1 to playback before
erase. 0 (default) erases first
(s8)

W/T.LOOP.START Set the current time as the
beginning of a loop

W/T.LOOP.END Set the current time as the loop
end, and jump to start

W/T.LOOP.ACTIVE
state

Set the state of looping (s8)

W/T.LOOP.SCALE
scale

Mul(Positive) or Div(Negative)
loop brace by arg. Zero resets to
original window (s8)

W/T.LOOP.NEXT
direction

Move loop brace
forward/backward by length of
loop. Zero jumps to loop start
(s8)

W/T.TIME
seconds sub

Move playhead to an arbitrary
location on tape (s16)

33https://www.whimsicalraps.com/pages/w-type

147

https://www.whimsicalraps.com/pages/w-type

OP OP (set) (aliases) Description

W/T.SEEK
seconds sub

Move playhead relative to
current position (s16)

W/T.CLEARTAPE WARNING! Erases all recorded
audio on the tape!

148

W/2.0 delay

Delay mode of W/ eurorack module.

More extensively covered in the W/ Documentation34.

OP OP (set) (aliases) Description

W/D.FBK level amount of feedback from read head to write head (s16V)
W/D.MIX fade fade from dry to delayed signal
W/D.FILT cutoff centre frequency of filter in feedback loop (s16V)
W/D.FREEZE is_active deactivate record head to freeze the current buffer (s8)
W/D.TIME seconds set delay buffer length in seconds (s16V), when rate == 1
W/D.LEN count divisions set buffer loop length as a fraction of buffer time (u8)
W/D.POS count divisions set loop start location as a fraction of buffer time (u8)
W/D.CUT count divisions jump to loop location as a fraction of loop length (u8)
W/D.FREQ.RNG freq_range TBD (s8)
W/D.RATE multiplier direct multiplier (s16V) of tape speed
W/D.FREQ volts manipulate tape speed with musical values (s16V)
W/D.CLK receive clock pulse for synchronization
W/D.CLK.RATIO mul div set clock pulses per buffer time, with clock mul/div (s8)
W/D.PLUCK volume pluck the delay line with noise at volume (s16V)
W/D.MOD.RATE rate set the multiplier for the modulation rate (s16V)
W/D.MOD.AMT amount set the amount (s16V) of delay line modulation to be applied

34https://www.whimsicalraps.com/pages/w-type

149

https://www.whimsicalraps.com/pages/w-type

W/2.0 synth

Synth mode of W/ eurorack module.

More extensively covered in the W/ Documentation35.

OP OP (set) (aliases) Description

W/S.PITCH voice
pitch

set voice (s8) to pitch (s16V)
in volts-per-octave

W/S.VEL voice
velocity

strike the vactrol of voice (s8)
at velocity (s16V) in volts

W/S.VOX voice
pitch velocity

set voice (s8) to pitch (s16V)
and strike the vactrol at
velocity (s16V)

W/S.NOTE pitch
level

dynamically assign a voice, set
to pitch (s16V), strike with
velocity(s16V)

W/S.POLY pitch
level

As W/S.NOTE but across dual
W/. Switches between primary
and secondary units every 4
notes or until reset using
W/S.POLY.RESET.

W/S.POLY.RESET Resets W/S.POLY note count.
W/S.AR.MODE
is_ar

in attack-release mode, all notes
are plucked and no release
is required’

W/S.LPG.TIME
time

vactrol time (s16V) constant.
-5=drones, 0=vtl5c3, 5=blits

W/S.LPG.SYM
symmetry

vactrol attack-release ratio.
-5=fastest attack, 5=long swells
(s16V)

W/S.CURVE curve cross-fade waveforms:
-5=square, 0=triangle, 5=sine
(s16V)

W/S.RAMP ramp waveform symmetry:
-5=rampwave, 0=triangle,
5=sawtooth (NB: affects FM
tone)

W/S.FM.INDEX
index

amount of FM modulation.
-5=negative, 0=minimum,
5=maximum (s16V)

W/S.FM.RATIO
num den

ratio of the FM modulator to
carrier as a ratio. floating point
values up to 20.0 supported
(s16V)

35https://www.whimsicalraps.com/pages/w-type

150

https://www.whimsicalraps.com/pages/w-type

OP OP (set) (aliases) Description

W/S.FM.ENV
amount

amount of vactrol envelope
applied to fm index, -5 to +5
(s16V)

W/S.PATCH jack
param

patch a hardware jack (s8) to a
param (s8) destination

W/S.VOICES
count

set number of polyphonic voices
to allocate. use 0 for unison
mode (s8)

151

Disting EX

The Expert Sleepers Disting EX is a multifunction Eurorack module. It can communi-
cate with the Teletype allowing you to select algorithms, save and load presets, control
parameters, play notes and send MIDI and Select Bus messages. Up to four devices
can be connected. The Disting I2C address must be set to 65 (66..68 for additional
modules).

OP OP (set) (aliases) Description

EX EX x get or set currently selected unit
to x (1-4)

EX1: ... send following Disting ops to
unit 1 ignoring the currently
selected unit

EX2: ... send following Disting ops to
unit 2 ignoring the currently
selected unit

EX3: ... send following Disting ops to
unit 3 ignoring the currently
selected unit

EX4: ... send following Disting ops to
unit 4 ignoring the currently
selected unit

EX.PRESET EX.PRESET x EX.PRE load preset x or get the currently
loaded preset

EX.SAVE x save to preset x
EX.RESET reset the currently loaded preset
EX.ALG EX.ALG x EX.A get or set the current algorithm

to x (single algorithms only)
EX.CTRL x y EX.C set I2C controller x to value y
EX.PARAM x EX.PARAM x y EX.P set parameter x to value y or get

the current parameter value
EX.PV x y set parameter x using a value

determined by scaling y from
0..16384 range.

EX.MIN x get the minimum possible value
for parameter x

EX.MAX x get the maximum possible value
for parameter x

EX.VOX x y z EX.V send a note to voice x using
pitch y and velocity z

EX.VOX.P x y EX.VP set voice x to pitch y
EX.VOX.O x EX.VO send a note off to voice x

152

OP OP (set) (aliases) Description

EX.CH x EX.# select default note channel (for
multi channel algorithms like
Poly FM)

EX.NOTE x y EX.N send a note using pitch x and
velocity y (voice allocated by the
Disting)

EX.N# x y z send a note to channel x using
pitch y and velocity z (voice
allocated by the Disting)

EX.NOTE.O x EX.NO send a note off using pitch x
EX.NO# x y send a note off to channel x

using pitch y
EX.ALLOFF EX.AO all notes off
EX.T x send a trigger to voice x with

medium velocity (use with SD
Triggers algo)

EX.TV x y send a trigger to voice x using
velocity y (use with SD Triggers
algo)

EX.REC x control WAV recorder recording:
1 to start, 0 to stop

EX.PLAY x control WAV recorder playback:
1 to start, 0 to stop

EX.AL.P x set Augustus Loop pitch to value
x

EX.AL.CLK send clock to Augustus Loop
EX.LP x get current state for loop x
EX.LP.REC x toggle recording for loop x
EX.LP.PLAY x toggle playback for loop x
EX.LP.CLR x clear loop x
EX.LP.REV x toggle reverse for loop x
EX.LP.REV? x returns 1 if loop x is reversed, 0

otherwise
EX.LP.DOWN x toggle octave down for loop x
EX.LP.DOWN? x return 1 if loop x is transposed

octave down, 0 otherwise
EX.M.CH EX.M.CH x get or set the currently selected

MIDI channel (1-16)
EX.M.N x y send MIDI Note On message for

note x (0..127) and velocity y
(0..127)

EX.M.N# x y z send MIDI Note On message on
channel x for note y (0..127) and
velocity z (0..127)

153

OP OP (set) (aliases) Description

EX.M.NO x send MIDI Note off message for
note x (0..127)

EX.M.NO# x y send MIDI Note off message on
channel x for note y (0..127)

EX.M.CC x y send MIDI CC message for
controller x (0..127) and value y
(0..127)

EX.M.CC# x y z send MIDI CC message on
channel x for controller y
(0..127) and value z (0..127)

EX.M.PB x send MIDI Pitchbend message
EX.M.PRG x send MIDI Program Change

message
EX.M.CLK send MIDI clock message
EX.M.START send MIDI Start message
EX.M.STOP send MIDI Stop message
EX.M.CONT send MIDI Continue message
EX.SB.CH EX.SB.CH x get or set the currently selected

Select Bus channel (1-16)
EX.SB.N x y send Select Bus Note On

message for note x (0..127) and
velocity y (0..127)

EX.SB.NO x send Select Bus Note off
message for note x (0..127)

EX.SB.PB x send Select Bus Pitchbend
message

EX.SB.CC x y send Select Bus CC message for
controller x (0..127) and value y
(0..127)

EX.SB.PRG x send Select Bus Program
Change message

EX.SB.CLK send Select Bus clock message
EX.SB.START send Select Bus Start message
EX.SB.STOP send Select Bus Stop message
EX.SB.CONT send Select Bus Continue

message
EX.A1 EX.A1 x get or set the left dual algorithm
EX.A2 EX.A2 x get or set the right dual

algorithm
EX.A12 x y set both dual algorithms
EX.P1 x EX.P1 x y get left algorithm parameter x or

set it to value y

154

OP OP (set) (aliases) Description

EX.P2 x EX.P2 x y get right algorithm parameter x
or set it to value y

EX.PV1 x y set left algorithm parameter x
using a value determined by
scaling y from 0..16384 range

EX.PV2 x y set right algorithm parameter x
using a value determined by
scaling y from 0..16384 range

EX.MIN1 x get left algorithm parameter
minimum value

EX.MAX1 x get left algorithm parameter
maximum value

EX.MIN2 x get right algorithm parameter
minimum value

EX.MAX2 x get right algorithm parameter
maximum value

EX.Z1 EX.Z1 x get left Z knob value or set left Z
parameter (0..127 range)

EX.ZO1 restore control for left Z knob
and input

EX.Z2 EX.Z2 x get right Z knob value or set
right Z parameter (0..127 range)

EX.ZO2 restore control for right Z knob
and input

EX.PRE1 x load left preset from x slot
EX.PRE2 x load right preset from x slot
EX.SAVE1 x save left preset to x slot
EX.SAVE2 x save right preset to x slot

EX

• EX / EX x

All Disting EX ops address the currently selected unit (unit 1 is selected by default),
unless placed after EX1..EX4 modifiers. Use this op to select a unit or get the currently
selected unit.

EX.CTRL

• EX.CTRL x y
• alias: EX.C

155

I2C controllers must be mapped to parameters on the Disting. Handy for controlling
multiple parameters at once.

EX.PARAM

• EX.PARAM x / EX.PARAM x y
• alias: EX.P

This op sets the specified parameter to the exact value specified. If you want to use
something like IN or PARAM to control a value, use EX.PV op instead as it will scale it
properly for you.

EX.PV

• EX.PV x y

This op sets the specified parameter by scaling the provided value from 0..16384 range
to the range used by the parameter. This op is useful when used in conjunction with
something like PARAM: EX.PV x PARAMwill allow you to use the param knob to control
full range of parameter x.

EX.VOX

• EX.VOX x y z
• alias: EX.V

This op will trigger notes when using SD Multisample or SD Triggers algorithms. Please
note chord/arpeggio Disting functionality is only available when using voices allocated
by the Disting itself (see EX.NOTE op).

EX.AL.P

• EX.AL.P x

Parameter 32 (Pitch CV Input) must be set to None in order for this to work. Pitch value
uses the same scale as other pitch related ops, so you can use N and related ops to
convert semitones to the actual pitch value.

EX.LP

• EX.LP x

0 - initial state 1 - recording 2 - recording extra material for crossfade 3 - playback 4 -
overdub 5 - paused / muted 6 - fading out towards pause

156

EX.M.CH

• EX.M.CH / EX.M.CH x

All MIDI ops will use the currently selected channel except ops that use a channel pa-
rameter. MIDI ops require a MIDI breakout.

EX.SB.CH

• EX.SB.CH / EX.SB.CH x

All Select Bus ops that use a channel will use the currently selected channel. Select
Bus settings must be properly configured on the Disting.

EX.Z1

• EX.Z1 / EX.Z1 x

Setting Z parameter value will disengage Z knob and input, use EX.ZO1 to restore con-
trol.

EX.Z2

• EX.Z2 / EX.Z2 x

Setting Z parameter value will disengage Z knob and input, use EX.ZO2 to restore con-
trol.

157

Matrixarchate

The SSSR Labs SM010 Matrixarchate is a 16x8 IO Sequenceable Matrix Signal Router.

OP OP (set) (aliases) Description

MA.SELECT x select the default matrixarchate
module, default 1

MA.STEP advance program sequencer
MA.RESET reset program sequencer
MA.PGM pgm select the current program

(1-based)
MA.ON x y connect row x and column y in

the current program
(rows/columns are 0-based)

MA.PON pgm x y connect row x and column y in
program pgm

MA.OFF x y disconnect row x and column y
in the current program

MA.POFF x y pgm connect row x and column y in
program pgm

MA.SET x y state set the connection at row x and
column y to state (1 - on, 0 -
off)

MA.PSET pgm x y
state

set the connection at row x and
column y in program pgm to
state (1 - on, 0 - off)

MA.COL col MA.COL col
value

get or set column col (as a 16
bit unsigned value where each
bit represents a connection)

MA.PCOL pgm col MA.PCOL pgm
col value

get or set column col in
program pgm

MA.ROW row MA.ROW row
value

get or set row row

MA.PROW pgm row MA.PROW pgm
row value

get or set row row in program
pgm

MA.CLR clear all connections
MA.PCLR pgm clear all connections in program

pgm

158

i2c2midi

i2c2midi is a DIY open source 2 HP Teletype Expander that speaks I2C and MIDI. It
bridges the gap between monome Teletype and external MIDI-enabled devices, using
I2C: It receives I2C messages from Teletype and converts them to MIDI notes, MIDI
CC messages and other MIDI messages to control external devices like synths and
effects; it receives MIDI messages from external MIDI controllers and stores the values
internally, which can be requested at any time by Teletype via I2C. For more information:
https://github.com/attowatt/i2c2midi

OP OP (set) (aliases) Description

I2M.CH I2M.CH x I2M.# Get currently set MIDI channel /
Set MIDI channel x (1..16 for
TRS, 17..32 for USB) for MIDI out

I2M.TIME I2M.TIME x I2M.T Get current note duration / Set
note duration of MIDI notes to x
ms (0..32767) for current
channel

I2M.T# ch I2M.T# ch x Get current note duration / Set
note duration of MIDI notes to x
ms (0..32767) for channel ch
(0..32).

I2M.SHIFT I2M.SHIFT x I2M.S Get current transposition / Set
transposition of MIDI notes to x
semitones (-127..127) for
current channel

I2M.S# ch I2M.S# ch x Get current transposition / Set
transposition of MIDI notes to x
semitones (-127..127) for
channel ch (0..32)

I2M.MIN x y Set minimum note number for
MIDI notes to x (0..127), using
mode y (0..3), for current
channel

I2M.MIN# ch x y Set minimum note number for
MIDI notes to x (0..127), using
mode y (0..3), for channel ch
(0..32)

I2M.MAX x y Set maximum note number for
MIDI notes to x (0..127), using
mode y (0..3), for current
channel

I2M.MAX# ch x y Set maximum note number for
MIDI notes to x (0..127), using
mode y (0..3), for channel ch
(0..32)

159

OP OP (set) (aliases) Description

I2M.REP I2M.REP x Get current repetition / Set
repetition of MIDI notes to x
repetitions (1..127) for current
channel

I2M.REP# ch x Get current repetition / Set
repetition of MIDI notes to x
repetitions (1..127) for channel
ch (0..32)

I2M.RAT I2M.RAT x Get current ratcheting / Set
ratcheting of MIDI notes to x
ratchets (1..127) for current
channel

I2M.RAT# ch x Get current ratcheting / Set
ratcheting of MIDI notes to x
ratchets (1..127) for channel ch
(0..32)

I2M.MUTE I2M.MUTE x Get mute state / Set mute state
of current MIDI channel to x
(0..1)

I2M.MUTE# I2M.MUTE# ch x Get mute state / Set mute state
of MIDI channel ch to x (0..1)

I2M.SOLO I2M.SOLO x Get solo state / Set solo state of
current MIDI channel to x (0..1)

I2M.SOLO# I2M.SOLO# ch x Get solo state / Set solo state of
MIDI channel ch to x (0..1)

I2M.NOTE x y I2M.N Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) on current
channel

I2M.N# ch x y Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) on channel ch
(1..32)

I2M.NOTE.O x I2M.NO Send a manual MIDI Note Off
message for note number x
(0..127)

I2M.NO# ch x Send a manual MIDI Note Off
message for note number x
(0..127) on channel ch (1..32)

I2M.NT x y z Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) and note
duration z ms (0..32767)

160

OP OP (set) (aliases) Description

I2M.NT# ch x y z Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) and note
duration z ms (0..32767) on
channel ch (1..32)

I2M.CC x y Send MIDI CC message for
controller x (0..127) with value y
(0..127)

I2M.CC# ch x y Send MIDI CC message for
controller x (0..127) with value y
(0..127) on channel ch (1..32)

I2M.CC.SET x y Send MIDI CC message for
controller x (0..127) with value y
(0..127), bypassing any slew
settings

I2M.CC.SET# ch
x y

Send MIDI CC message for
controller x (0..127) with value y
(0..127) on channel ch (1..32),
bypassing any slew settings

I2M.CCV x y Send MIDI CC message for
controller x (0..127) with volt
value y (0..16383, 0..+10V)

I2M.CCV# ch x y Send MIDI CC message for
controller x (0..127) with volt
value y (0..16383, 0..+10V) on
channel ch (1..32)

I2M.CC.OFF x I2M.CC.OFF x y Get current offset / Set offset of
values of controller x (0..127) to
y (-127..127)

I2M.CC.OFF# ch x I2M.CC.OFF# ch
x y

Get current offset / Set offset of
values of controller x (0..127) to
y (-127..127) for channel ch
(1..32)

I2M.CC.SLEW x I2M.CC.SLEW x
y

Get current slew time for
controller x / Set slew time for
controller x (0..127) to y ms
(0..32767)

I2M.CC.SLEW# ch
x

I2M.CC.SLEW#
ch x y

Get current slew time for
controller x / Set slew time for
controller x (0..127) to y ms
(0..32767) for channel ch (1..32)

I2M.NRPN x y z Send MIDI NRPN message
(high-res CC) for parameter MSB
x and LSB y with value y
(0..16383)

161

OP OP (set) (aliases) Description

I2M.NRPN# ch x y
z

Send MIDI NRPN message
(high-res CC) for parameter MSB
x and LSB y with value y
(0..16383) on channel ch (1..32)

I2M.NRPN.OFF x y I2M.NRPN.OFF x
y z

Get current offset / Set offset of
values of NRPN messages to z
(-16384..16383)

I2M.NRPN.OFF#
ch x y

I2M.NRPN.OFF#
ch x y z

Get current offset / Set offset of
values of NRPN messages to z
(-16384..16383) for channel ch
(1..32)

I2M.NRPN.SLEW x
y

I2M.NRPN.SLEW
x y z

Get current slew time / Set slew
time for NRPN messages to z
ms (0..32767)

I2M.NRPN.SLEW#
ch x y

I2M.NRPN.SLEW#
ch x y z

Get current slew time / Set slew
time for NRPN messages to z
ms (0..32767) for channel ch
(1..32)

I2M.NRPN.SET x
y z

Send MIDI NRPN message for
parameter MSB x and LSB y
with value y (0..16383),
bypassing any slew settings

I2M.NRPN.SET#
ch x y z

Send MIDI NRPN message for
parameter MSB x and LSB y
with value y (0..16383) on
channel ch (1..32), bypassing
any slew settings

I2M.PRG x Send MIDI Program Change
message for program x (0..127)

I2M.PB x Send MIDI Pitch Bend message
with value x (-8192..8191)

I2M.AT x Send MIDI After Touch message
with value x (0..127)

I2M.CLK Send MIDI Clock message, this
still needs improvement …

I2M.START Send MIDI Clock Start message
I2M.STOP Send MIDI Clock Stop message
I2M.CONT Send MIDI Clock Continue

message
I2M.CHORD x y z I2M.C Play chord x (1..8) with root note

y (-127..127) and velocity z
(1..127)

I2M.C# ch x y z Play chord x (1..8) with root note
y (-127..127) and velocity z
(1..127) on channel ch (1..32)

162

OP OP (set) (aliases) Description

I2M.C.ADD x y I2M.C+ Add relative note y (-127..127)
to chord x (0..8), use x = 0 to
add to all chords

I2M.C.RM x y I2M.C- Remove note y (-127..127) from
chord x (0..8), use x = 0 to
remove from all chords

I2M.C.INS x y z Add note z (-127..127) to chord
x (0..8) at index y (0..7), with z
relative to the root note; use x =
0 to insert into all chords

I2M.C.DEL x y Delete note at index y (0..7)
from chord x (0..8), use x = 0
to delete from all chords

I2M.C.SET x y z Set note at index y (0..7) in
chord x (0..8) to note z
(-127..127), use x = 0 to set in
all chords

I2M.C.B x y Clear and define chord x (0..8)
using reverse binary notation
(R...)

I2M.C.CLR x Clear chord x (0..8), use x = 0
to clear all chords

I2M.C.L x I2M.C.L x y Get current length / Set length of
chord x (0..8) to y (1..8), use x
= 0 to set length of all chords

I2M.C.SC x y Set scale for chord x (0..8)
based on chord y (0..8), use x =
0 to set for all chords, use y =
0 to remove scale

I2M.C.REV x y Set reversal of notes in chord x
(0..8) to y. y = 0 or an even
number means not reversed, y =
1 or an uneven number means
reversed. Use x = 0 to set for
all chords.

I2M.C.ROT x y Set rotation of notes in chord x
(0..8) to y steps (-127..127), use
x = 0 to set for all chords

I2M.C.TRP x y Set transposition of chord x
(0..8) to y (-127..127), use x =
0 to set for all chords

I2M.C.DIS x y z Set distortion of chord x (0..8) to
y (-127..127) with anchor point z
(0..16), use x = 0 to set for all
chords

163

OP OP (set) (aliases) Description

I2M.C.REF x y z Set reflection of chord x (0..8) to
y iterations (-127..127) with
anchor point z (0..16), use x =
0 to set for all chords

I2M.C.INV x y Set inversion of chord x (0..8) to
y (-32..32), use x = 0 to set for
all chords

I2M.C.STR x y Set strumming of chord x (0..8)
to x ms (0..32767), use x = 0
to set for all chords

I2M.C.VCUR w x y
z

I2M.C.V~Set velocity curve for chord w
(0..8) with curve type x (0..5),
start value y% (0..32767) and
end value z% (0..32767), use w
= 0 to set for all chords, use x
= 0 to turn off

I2M.C.TCUR w x y
z

I2M.C.T~Set time curve to strumming for
chord w (0..8) with curve type x
(0..5), start value y% (0..32767)
and end value z% (0..32767),
use w = 0 to set for all chords,
use x = 0 to turn off

I2M.C.DIR x y Set play direction for chord x
(0..8) to direction y (0..8)

I2M.C.QN x y z Get the transformed note
number of a chord note for
chord x (1..8) with root note y
(-127..127) at index z (0..7)

I2M.C.QV x y z Get the transformed note
velocity of a chord note for
chord x (1..8) with root velocity
y (1..127) at index z (0..7)

I2M.B.R x Turn recording of notes into the
buffer on or off

I2M.B.L x Set the length of the buffer to x
ms (0..32767)

I2M.B.START x Add an offset of x ms (0..32767)
to the start of the buffer

I2M.B.END x Add a negative offset of x ms
(0..32767) to the end of the
buffer

I2M.B.DIR x Set the play direction x (0..2) of
the buffer

164

OP OP (set) (aliases) Description

I2M.B.SPE x Set the playing speed x
(1..32767) of the buffer. x =
100 is equivalent to ‘normal
speed’, x = 50 means double
the speed, x = 200 means half
the speed, etc.

I2M.B.FB x Set the feedback length x
(0..255) of the buffer

I2M.B.NSHIFT x Set the note shift of recorded
notes to x semitones (-127..127)

I2M.B.VSHIFT x Set the velocity shift of recorded
notes to x (-127..127)

I2M.B.TSHIFT x Set the note duration shift (‘time
shift’) of recorded notes to x ms
(-16384..16383)

I2M.B.NOFF x Set the note offset of recorded
notes to x semitones (-127..127)

I2M.B.VOFF x Set the velocity offset of
recorded notes to x (-127..127)

I2M.B.TOFF x Set the note duration offset
(‘time offset’) of recorded notes
to x ms (-16384..16383)

I2M.B.CLR Clear the buffer, erasing all
recorded notes in the buffer

I2M.B.MODE x Set the buffer mode to x (0..1).
1) Digital 2) Tape

I2M.Q.CH I2M.Q.CH x I2M.Q.# Get currently set MIDI channel /
Set MIDI channel x (1..16) for
MIDI in

I2M.Q.LATCH x Turn on or off ‘latching’ for MIDI
notes received via MIDI in

I2M.Q.NOTE x I2M.Q.N Get x (0..7) last note number
(0..127) received via MIDI in

I2M.Q.VEL x I2M.Q.V Get x (0..7) last note velocity
(1..127) received via MIDI in

I2M.Q.CC x Get current value (0..127) of
controller x (0..127) received via
MIDI in

I2M.Q.LCH Get the latest channel (1..16)
received via MIDI in

I2M.Q.LN Get the note number (0..127) of
the latest Note On received via
MIDI in

165

OP OP (set) (aliases) Description

I2M.Q.LV Get the velocity (1..127) of the
latest Note On received via MIDI
in

I2M.Q.LO Get the note number (0..127) of
the latest Note Off received via
MIDI in

I2M.Q.LC Get the latest controller number
(0..127) received via MIDI in

I2M.Q.LCC Get the latest controller value
(0..127) received via MIDI in

I2M.PANIC Send MIDI Note Off messages
for all notes on all channels, and
reset note duration, shift,
repetition, ratcheting, min/max

I2M.CH

• I2M.CH / I2M.CH x
• alias: I2M.#

Get currently set MIDI channel / Set MIDI channel x (1..16 for TRS, 17..32 for USB) for
MIDI out. Use MIDI channels 1-16 for TRS output, 17-32 for USB output. Default is x =
1.

I2M.TIME

• I2M.TIME / I2M.TIME x
• alias: I2M.T

Get current note duration / Set note duration of MIDI notes to x ms (0..32767) for cur-
rent channel. Based on note duration, i2c2midi will send a MIDI Note Off message
automatically. Set x = 0 to deactivate automatic Note Off messages. Default is x =
100.

I2M.T#

• I2M.T# ch / I2M.T# ch x

Get current note duration / Set note duration of MIDI notes to x ms (0..32767) for chan-
nel ch (0..32). Use ch = 0 to set for all channels.

166

I2M.SHIFT

• I2M.SHIFT / I2M.SHIFT x
• alias: I2M.S

Get current transposition / Set transposition of MIDI notes to x semitones (-127..127)
for current channel. Default is x = 0.

I2M.S#

• I2M.S# ch / I2M.S# ch x

Get current transposition / Set transposition of MIDI notes to x semitones (-127..127)
for channel ch (0..32). Use ch = 0 to set for all channels.”

I2M.MIN

• I2M.MIN x y

Set minimum note number for MIDI notes to x (0..127), using mode y (0..3), for current
channel. Default is x = 0 and y = 0. The following modes are available for notes
lower than the minimum: 0) Ignore notes 1) Clamp notes 2) Fold back notes by one
octave 3) Fold back notes by multiple octaves.

I2M.MIN#

• I2M.MIN# ch x y

Set minimum note number for MIDI notes to x (0..127), using mode y (0..3), for channel
ch (0..32). Use ch = 0 to set for all channels.

I2M.MAX

• I2M.MAX x y

Set maximum note number for MIDI notes to x (0..127), using mode y (0..3), for current
channel. Default is x = 0 and y = 0. The following modes are available for notes
higher than the maximum: 0) Ignore notes 1) Clamp notes 2) Fold back notes by one
octave 3) Fold back notes by multiple octaves.

167

I2M.MAX#

• I2M.MAX# ch x y

Set maximum note number for MIDI notes tox (0..127), using modey (0..3), for channel
ch (0..32). Use ch = 0 to set for all channels.

I2M.REP

• I2M.REP / I2M.REP x

Get current repetition / Set repetition of MIDI notes to x repetitions (1..127) for current
channel. Set x = 1 for no repetitions. Default is x = 1.

I2M.REP#

• I2M.REP# ch x

Get current repetition / Set repetition of MIDI notes to x repetitions (1..127) for channel
ch (0..32). Use ch = 0 to set for all channels.

I2M.RAT

• I2M.RAT / I2M.RAT x

Get current ratcheting / Set ratcheting of MIDI notes to x ratchets (1..127) for current
channel. Set x = 1 for no ratcheting. Default is x = 1.

I2M.RAT#

• I2M.RAT# ch x

Get current ratcheting / Set ratcheting of MIDI notes to x ratchets (1..127) for channel
ch (0..32). Use ch = 0 to set for all channels.

I2M.NOTE

• I2M.NOTE x y
• alias: I2M.N

Send MIDI Note On message for note number x (0..127) with velocity y (1..127) on
current channel. A velocity of 0 will be treated as a MIDI Note Off message.

168

I2M.NOTE.O

• I2M.NOTE.O x
• alias: I2M.NO

Send a manual MIDI Note Off message for note number x (0..127). This can be used
either before i2c2midi sends the automatic Note Off message (to stop the note from
playing before its originally planned ending), or in combination with I2M.TIME set to
0 (in which case i2c2midi does not send automatic Note Off messages).

I2M.NT

• I2M.NT x y z

Send MIDI Note On message for note number x (0..127) with velocity y (1..127) and
note duration z ms (0..32767).

I2M.CC

• I2M.CC x y

Send MIDI CC message for controller x (0..127) with value y (0..127).

I2M.CC.SET

• I2M.CC.SET x y

Send MIDI CC message for controller x (0..127) with value y (0..127), bypassing any
slew settings.

I2M.CCV

• I2M.CCV x y

Send MIDI CC message for controller x (0..127) with volt value y (0..16383, 0..+10V).

I2M.CC.OFF

• I2M.CC.OFF x / I2M.CC.OFF x y

Get current offset / Set offset of values of controller x (0..127) to y (-127..127). Default
is y = 0.

169

I2M.CC.SLEW

• I2M.CC.SLEW x / I2M.CC.SLEW x y

Get current slew time for controller x / Set slew time for controller x (0..127) to y ms
(0..32767). i2c2midi will ramp from the controller’s last value to a new value within
the given time x, sending MIDI CCs at a maximum rate of 30 ms. If the slewing is still
ongoing when a new value is set, the slewing uses its current position as the last value.
Is 8 CC controller values can be slewed simoultaneously before the oldest currently
slewing value is overwritten by the newest. Default is y = 0.

I2M.NRPN

• I2M.NRPN x y z

Send MIDI NRPN message (high-res CC) for parameter MSB x and LSB y with value y
(0..16383).

I2M.NRPN.OFF

• I2M.NRPN.OFF x y / I2M.NRPN.OFF x y z

Get current offset / Set offset of values of NRPN messages to z (-16384..16383). De-
fault is z = 0.

I2M.NRPN.SLEW

• I2M.NRPN.SLEW x y / I2M.NRPN.SLEW x y z

Get current slew time / Set slew time for NRPN messages to z ms (0..32767). Default
is z = 0.

I2M.NRPN.SET

• I2M.NRPN.SET x y z

Send MIDI NRPN message for parameter MSB x and LSB y with value y (0..16383),
bypassing any slew settings.

170

I2M.CHORD

• I2M.CHORD x y z
• alias: I2M.C

Play chord x (1..8) with root note y (-127..127) and velocity z (1..127). A chord con-
sists of up to eight notes defined relative to the root note via I2M.C.ADD, I2M.C.RM,
I2M.C.INS, I2M.C.DEL or I2M.C.SET, which are sent out as MIDI Note On mes-
sages in the order they are defined in the chord. If no note has been defined in the
chord yet, no note will be played. 8 chords can be defined using their respective index
1..8.

I2M.C.ADD

• I2M.C.ADD x y
• alias: I2M.C+

Add note y (-127..127) to chord x (0..8), with y relative to the root note specified when
playing a chord. E.g. add 0, 4 and 7 to define a major triad. Or go more experimental,
e.g. -2, 13, 2, 13. Up to eight chords can be defined, with eight notes each. Use x =
0 to add the note to all chords.

I2M.C.RM

• I2M.C.RM x y
• alias: I2M.C-

Remove note y (-127..127) from chord x (0..8). If the chord contains note y multiple
times, the latest instance is removed. If the chord does not contain the note the mes-
sage is simply ignored. Use x = 0 to remove the note from all chords.

I2M.C.INS

• I2M.C.INS x y z

Add note z (-127..127) to chord x (0..8) at index y (0..7), with z relative to the root note.
Already defined notes at index y and higher are pushed to the right. Use x = 0 to
insert the note to all chords.

I2M.C.DEL

• I2M.C.DEL x y

Delete note at index y (0..7) from chord x (0..8). Notes at index y + 1 and higher are
pushed to the left. If y is higher than the length of the chord, the message is ignored.
Use x = 0 to delete the note from all chords.

171

I2M.C.SET

• I2M.C.SET x y z

Set note at index y (0..7) in chord x (0..8) to note z (-127..127), replacing what was
defined earlier at this index. If y is higher than the length of the chord, the message is
ignored. Use x = 0 to set the note in all chords.

I2M.C.B

• I2M.C.B x y

Clear and define chord x (0..8) using reverse binary notation (R...). Use 1 or 0 in
order to include or exclude notes from the chord. E.g. use x = R10001001 for 0,4,7
(major triad) or x = R1000000100000001 for 0,7,15. y can be a maximum of 16
digit long. Use x = 0 to clear and define all chords.

I2M.C.CLR

• I2M.C.CLR x

Clear chord x (0..8). Use x = 0 to clear all chords.

I2M.C.L

• I2M.C.L x / I2M.C.L x y

Get current length / Set length of chord x (0..8) to y (1..8). The length of a chord
changes automatically each time a note is added or removed. Values of x higher than
number of actual defined notes are ignored. Already defined notes are not affected by
setting the chord length, but won’t be played if their index is outside of the set chord
length. Use x = 0 to set the length of all chords.

I2M.C.SC

• I2M.C.SC x y

Set scale for chord x (0..8) based on chord y (0..8). Setting a scale for a chord comes
in handy when using chord transformations that introduce new notes, like I2M.C.TRP,
I2M.C.DIS or I2M.C.REF. Use y = 0 to remove the scale. Use x = 0 to set reversal
for all chords.

172

I2M.C.REV

• I2M.C.REV x y

Set reverse of notes in chord x (0..8) to y. y = 0 or an even number means not
reversed, y = 1 or an uneven number means reversed. E.g. y = 1 for chord 0,3,7
will lead to 7,3,0. Default is y = 0. Use x = 0 to reverse all chords.

I2M.C.ROT

• I2M.C.ROT x y

Set rotation of notes in chord x (0..8) to y steps (-127..127). E.g. y = 1 of chord
0,3,7 will lead to 3,7,0, y = 2 will lead to7,0,3,y = -1will lead to7,0,3.
Default isy = 0. Usex = 0‘ to set rotation for all chords.

I2M.C.TRP

• I2M.C.TRP x y

Set transposition of chord x (0..8) to y (-127..127). Transposition adds y to the note
number of each note in the chord.Default isy = 0. Usex = 0 to set transposition for all
chords. This transformation introduces new notes to the chord – try it in combination
with setting a scale.

I2M.C.DIS

• I2M.C.DIS x y z

Set distortion of chord x (0..8) to width y (-127..127) with anchor point z (0..16). Dis-
tortion adds y+n to the note number of each note in the chord. The anchor point in-
fluences the direction and amount (n) of the transformation. Default is y = 0. Use x
= 0 to set distortion for all chords. This transformation introduces new notes to the
chord – try it in combination with setting a scale.

I2M.C.REF

• I2M.C.REF x y z

Set reflection of chord x (0..8) to y (-127..127) with anchor point z (0..16). The anchor
point defines at which axis the chord gets reflected. Default is y = 0. Use x = 0
to set distortion for all chords. This transformation introduces new notes to the chord
– try it in combination with setting a scale.

173

I2M.C.INV

• I2M.C.INV x y

Set inversion of chord x (0..8) to y (-32..32). Default is y = 0. Use x = 0 to set
inversion for all chords.

I2M.C.STR

• I2M.C.STR x y

Set strumming of chord x (0..8) to x ms (0..32767). Strumming plays the notes of a
chord arpeggiated, with an interval of y ms in between notes. Default is y = 0. Use x
= 0 to set strumming for all chords.

I2M.C.VCUR

• I2M.C.VCUR w x y z
• alias: I2M.C.V~

Set velocity curve for chord w (0..8) with curve type x (0..5), start value y% (0..32767)
and end value z% (0..32767). This will affect the velocity of the notes in the order they
are defined in the chord. Start and end percentages refer to the velocity with which the
chord is played via I2M.C. Use x = 0 to turn velocity curve off. The following curves
are available: 0) Off 1) Linear 2) Exponential 3) Triangle 4) Square 5) Random. Use w
= 0 to set velocity curve for all chords. Try a random curve with subtle values for a
humanizing effect.

I2M.C.TCUR

• I2M.C.TCUR w x y z
• alias: I2M.C.T~

Set time curve for chord w (0..8) with curve type x (0..5), start value y% (0..32767)
and end value z% (0..32767). This will affect the time interval between the notes in
the order they are defined in the chord. Start and end percentages refer to the current
strumming setting of the chord, set via I2M.C.STR. Use x = 0 to turn time curve off.
The following curves are available: 0) Off 1) Linear 2) Exponential 3) Triangle 4) Square
5) Random. Use w = 0 to set time curve for all chords. Try a square curve with similar
values to create swing. Try a random curve with subtle values for a humanizing effect.

174

I2M.C.DIR

• I2M.C.DIR x y

Set play direction for chord x (0..8) to direction y (0..8). This will affect the order in
which chord notes are played. Make sure to set strumming via I2M.C.STR. The fol-
lowing directions are available: 0) Forward (0,1,2,3,4) 1) Backward (4,3,2,1,0) 2) In-
side out (2,1,3,0,4) 3) Outside in (0,4,1,3,2) 4) Random (2,3,1,0,4) 5) Bottom repeat
(0,1,0,2,0,3,0,4) 6) Top repeat (0,4,1,4,2,4,3,4) 7) Pingpong (0,1,2,3,4,3,2,1,0) 8) Ping &
pong (0,1,2,3,4,4,3,2,1,0). Default is y = 0.

I2M.C.QN

• I2M.C.QN x y z

Get the transformed note number of a chord note for chord x (1..8) with root note y
(-127..127) at index z (0..7). The response is the absolute note number (0..127). Use
this OP to send the transformed note number to other devices within eurorack, e.g. via
V/OCT to any oscillator or via I2C to I2C-enabled devices like Just Friends or disting
EX.

I2M.C.QV

• I2M.C.QV x y z

Get the transformed note velocity of a chord note for chord x (1..8) with root velocity y
(1..127) at index z (0..7). The response is the absolute note velocity (0..127). Use this
OP to send the transformed note velocity to other devices within eurorack, e.g. via CV
to a VCA or via I2C to I2C-enabled devices like Just Friends or disting EX.

I2M.B.R

• I2M.B.R x

Turn recording of notes into the buffer on or off. x = 1 is on, x = 0 is off. If recording
is turned on, all outgoing MIDI notes are recorded into the buffer, storing note number,
note velocity, note duration and MIDI channel.

I2M.B.L

• I2M.B.L x

Set the length of the buffer to x ms (0..32767). Default is x = 1000.

175

I2M.B.START

• I2M.B.START x

Add an offset of x ms (0..32767) to the start of the buffer. The offset time is non-
distructively added to the start of the looping buffer. E.g. if the buffer length is set to
1000 ms and start offset is set to 200 ms, the buffer will loop the section 200 - 1000
ms, resulting in a looping buffer length of 800 ms. Default is x = 0.

I2M.B.END

• I2M.B.END x

Add a negative offset of xms (0..32767) to the end of the buffer. The offset time is non-
distructively substracted from the end of the looping buffer. E.g. if the buffer length
is set to 1000 ms, start offset is set to 200 ms, and end offset is set to 300 ms, the
buffer will loop the section 200 - 700 ms, resulting in a looping buffer length of 500
ms. Default is x = 0.

I2M.B.DIR

• I2M.B.DIR x

Set the play direction x (0..2) of the buffer. The following directions are available: 0)
Forward 1) Backward 2) Pingpong. Keep in mind that changing the direction only af-
fects notes that have been already recorded to the buffer before the change in direction;
all notes recorded afterwards are recorded relative to the new direction. Default is x =
0.

I2M.B.SPE

• I2M.B.SPE x

Set the playing speed x (1..32767) of the buffer. x = 100 is equivalent to ‘normal
speed’, x = 50 means double the speed, x = 200 means half the speed, etc. Of
course, all values in between can be chosen. Keep in mind that changing the speed
only affects notes that have been already recorded to the buffer before the change in
speed; all notes recorded afterwards are recorded relative to the new speed. Default is
x = 100.

176

I2M.B.FB

• I2M.B.FB x

Set the feedback length x (0..255) of the buffer. By default, each recorded note is get-
ting decreased in velocity with each buffer iteration. The feedback value determines,
how many buffer iterations a recorded note will ‘survive’ in the buffer, before the de-
creasing velocity will reach zero (meaning the note is remove from the buffer). Set x =
0 to turn off the automatic decrease in velocity, keeping notes in the buffer indefinitely.
Use this setting in combination with I2M.B.VSHIFT or I2M.B.CLR. Default is x = 8.

I2M.B.NSHIFT

• I2M.B.NSHIFT x

Set the note shift of recorded notes to x semitones (-127..127). With each buffer itera-
tion, this value gets added accumulatively to the original note number. E.g. with a note
shift setting of x = 12, a recorded note 60 will be played as note 72 during the first
buffer iteration, as note 84 during the second iteration, etc. Default is x = 0.

I2M.B.VSHIFT

• I2M.B.VSHIFT x

Set the velocity shift of recorded notes to x (-127..127). With each buffer iteration,
this value gets added accumulatively to the original note velocity. E.g. with a velocity
shift setting of x = -10, a recorded note with velocity 110 will be played with ve-
locity 100 during the first buffer iteration, with velocity 90 during the second iteration,
etc. Default is x = 0. Please note: This setting is the twin sibling of I2M.B.FB:
While I2M.B.FB defines the number of iterations determining the amount of change
in velocity per iteration, I2M.B.VSHIFT defines the amount of change in velocity per
iteration determining the number of iterations.

I2M.B.TSHIFT

• I2M.B.TSHIFT x

Set the note duration shift (‘time shift’) of recorded notes toxms (-16384..16383). With
each buffer iteration, this value gets added accumulatively to the original note duration.
E.g. with a duration shift setting of x = 100, a recorded note with duration 200 will be
played with duration 300 during the first buffer iteration, with duration 400 during the
second iteration, etc. Default is x = 0.

177

I2M.B.NOFF

• I2M.B.NOFF x

Set the note offset of recorded notes to x semitones (-127..127). This value gets added
once to the original note number and is then kept for all buffer iterations. E.g. with a
note offset setting of x = 7, a recorded note 60 will be played as note 67 for all buffer
iterations. Default is x = 0.

I2M.B.VOFF

• I2M.B.VOFF x

Set the velocity offset of recorded notes to x (-127..127). This value gets added once
to the original note velocity and is then kept for all buffer iterations. E.g. with a velocity
offset setting of x = -50, a recorded note with velocity 120will be played with velocity
70 for all buffer iterations. Default is x = 0.

I2M.B.TOFF

• I2M.B.TOFF x

Set the note duration offset (‘time offset’) of recorded notes to x ms (-16384..16383).
This value gets added once to the original note duration and is then kept for all buffer
iterations. E.g. with a duration offset setting of x = -50, a recorded note with duration
200 will be played with duration 150 for all buffer iterations. Default is x = 0.

I2M.B.MODE

• I2M.B.MODE x

Set the buffer mode to x (0..1). The buffer can work in two different modes: 1) Digital
2) Tape. In Digital mode, the buffer speed (set via I2M.B.SPE) works independent
of note number and note duration: If the buffer speed changes, the note number and
note duration of a recorded note stays unaffected. In Tape mode on the other hand,
the buffer speed affects the note number and note duration of recorded notes in the
buffer, mimicking the behaviour of real tape. If the buffer speed gets doubled, the note
number is pitched up by one octave and the note duration gets divided in half. Similarly,
if the buffer speed gets divided in half, the note number is pitched down an octave and
the note duration gets doubled, etc. Default is x = 0.

178

I2M.Q.CH

• I2M.Q.CH / I2M.Q.CH x
• alias: I2M.Q.#

Get currently set MIDI channel / Set MIDI channel x (1..16) for MIDI in. Default is x =
1.

I2M.Q.LATCH

• I2M.Q.LATCH x

Turn on or off ‘latching’ for MIDI notes received via MIDI in. x = 0 means Note Off
messages are recorded in the note history, so only notes with keys currently held down
on the MIDI controller are stored. x = 1means Note Off messages are not recorded in
the note history, so notes are still stored after releasing the respective key on the MIDI
controller. Default is x = 1.

179

Advanced

Teletype terminology

Here is a picture to help understand the naming of the various parts of a Teletype com-
mand:

Figure 2: Teletype command terminology

COMMAND The entire command, e.g. IF X: Y 1; Z 2;.

PRE The (optional) part before the PRE SEP, e.g. IF X.

POST The part after the PRE SEP, e.g. Y 1; Z 2.

SUB A sub command (only allowed in the POST), e.g. Y 1, or Z 2.

PRE SEP A colon, only one is allowed.

SUB SEP A semi-colon, that separates sub commands (if used), only allowed in the
POST.

NUM A number between −32768 and 32767.

OP An operator, e.g. X, TR.PULSE

MOD A modifier, e.g. IF, or L.

180

Sub commands

Sub commands allow you to run multiple commands on a single line by utilising a semi-
colon to separate each command, for example the following script:

X 0
Y 1
Z 2

Can be rewritten using sub commands as:

X 0; Y 1; Z 2

On their own sub commands allow for an increased command density on the Teletype.
However when combined with PRE statements, certain operations become a lot easier.

Firstly, sub commands cannot be used before a MOD or in the PRE itself. For example,
the following is not allowed:

X 1; IF X: TR.PULSE 1

We can use them in the POST though, particularly with an IF, for example:

IF X: CV 1 N 60; TR.P 1
IF Y: TR.P 1; TR.P 2; TR.P 3

Sub commands can also be used with L.

Aliases

In general, aliases are a simple concept to understand. Certain OPs have been given
shorted names to save space and the amount of typing, for example:

TR.PULSE 1

Can be replaced with:

TR.P 1

Where confusion may arise is with the symbolic aliases that have been given to some
of the maths OPs. For instance + is given as an alias for ADD and it must be used as a
direct replacement:

181

X ADD 1 1
X + 1 1

The key to understanding this is that the Teletype uses prefix notation36 always, even
when using mathematical symbols.

The following example (using infix notation) will not work:

X 1 + 1

Aliases are entirely optional, most OPs do not have aliases. Consult the OP tables and
documentation to find them.

Avoiding non-determinism

Although happy accidents in the modular world are one of it’s many joys, when writing
computer programs they can be incredibly frustrating. Here are some small tips to help
keep things predictable (when you want them to be):

1. Don’t use variables unless you need to.
This is not to say that variables are not useful, rather it’s the opposite and they
are extremely powerful. But it can be hard to keep a track of what each variable
is used for and on which script it is used. Rather, try to save using variables for
when you do want non-deterministic (i.e. variable) behaviour.

2. Consider using I as a temporary variable.
If you do find yourself needing a variable, particularly one that is used to continue
a calculation on another line, consider using the variable I. Unlike the other vari-
ables, I is overwritten whenever L is used, and as such, is implicitly transient in
nature. One should never need to worry about modifying the value of I and caus-
ing another script to malfunction, as no script should ever assume the value of
I.

3. Use PN versions of OPs.
Most P OPs are now available as PN versions that ignore the value of P.I.
(e.g. PN.START for P.START). Unless you explicitly require the non-determinism
of P versions, stick to the PN versions (space allowing).

4. Avoid usingA,B,C andD to refer to the trigger outputs, instead use the numerical
values directly.
As A-D are variables, they may no longer contain the values 1-4, and while this
was the recommend way to name triggers, it is no longer consider ideal. Newer
versions of the Teletype hardware have replaced the labels on the trigger outputs,
with the numbers 1 to 4.

36Also know as Polish notation.

182

Grid integration

Grid integration can be described very simply: it allows you to use grid with teletype.
However, there is more to it than just that. You can create custom grid interfaces that
can be tailored individually for each scene. Since it’s done with scripts you can dynam-
ically change these interfaces at any point - you could even create a dynamic interface
that reacts to the scene itself or incoming triggers or control voltages.

You can simply use grid as an LED display to visualize your scene. Or make it into an
earthsea style keyboard. You can create sequencers, or control surfaces to control
other sequencers. The grid operators simplify building very complex interfaces, while
something simple like a bank of faders can be done with just two lines of scripts.

Grid integration consists of 3 main features: grid operators, Grid Visualizer, and Grid
Control mode. Grid operators allow you to draw on grid or create grid controls, such as
buttons and faders, that can trigger scripts when pressed. As with any other operators
you can execute them in Live screen or use them in any of your scripts.

Grid Visualizer provides a virtual grid within the Teletype itself:

Figure 3: Grid Visualizer

It can be very useful while developing a script as you don’t have to switch between
the grid and the keyboard as often. To turn it on navigate to Live screen and press
Alt-G (press again to switch to Full View / turn it off). You can also emulate button
presses, which means it can even be used as an alternative to grid if you don’t have one,
especially in full mode - try it with one of the many grid scenes37 already developed. For
more information on how to use it please refer to the Grid Visualizer documentation38.

Grid Control Mode is a built in grid interface that allows you to use grid to trigger and
mute scripts, edit variables and tracker values, save and load scenes, and more. It’s
available in addition to whatever grid interface you develop - simply press the front
panel button while the grid is attached. It can serve as a simple way to use grid to

37https://github.com/scanner-darkly/teletype/wiki/CODE-EXCHANGE
38https://github.com/scanner-darkly/teletype/wiki/GRID-VISUALIZER

183

https://github.com/scanner-darkly/teletype/wiki/CODE-EXCHANGE
https://github.com/scanner-darkly/teletype/wiki/GRID-VISUALIZER

control any scene even without using grid ops, but it can also be very helpful when used
together with a scripted grid interface. For more information and diagrams please refer
to the Grid Control documentation39,

If you do want to try and build your own grid interfaces the Grid Studies40 is the best
place to start.

39https://github.com/scanner-darkly/teletype/wiki/GRID-CONTROL-MODE
40https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

184

https://github.com/scanner-darkly/teletype/wiki/GRID-CONTROL-MODE
https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

Alphabetical list of OPs and MODs

OP OP (set) (aliases) Description

$F script execute script as a function
$F1 script param execute script as a function with

1 parameter
$F2 script
param1 param2

execute script as a function with
2 parameters

$L script line execute script line
$L1 script line
param

execute script line as a function
with 1 parameter

$L2 script line
param1 param2

execute script line as a function
with 2 parameters

$S line execute script line within the
same script as a function

$S1 line param execute script line within the
same script as a function with 1
parameter

$S2 line param1
param2

execute script line within the
same script as a function with 2
parameters

& x y bitwise and x & y
? x y z if condition x is true return y,

otherwise return z
@ @ x get or set the current pattern

value under the turtle
@BOUNCE @BOUNCE 1 get whether the turtle fence

mode is BOUNCE, or set it to
BOUNCE with 1

@BUMP @BUMP 1 get whether the turtle fence
mode is BUMP, or set it to BUMP
with 1

@DIR @DIR x get the direction of the turtle’s
@STEP in degrees or set it to x

@F x1 y1 x2 y2 set the turtle’s fence to corners
x1,y1 and x2,y2

@FX1 @FX1 x get the left fence line or set it to
x

@FX2 @FX2 x get the right fence line or set it
to x

185

OP OP (set) (aliases) Description

@FY1 @FY1 x get the top fence line or set it to
x

@FY2 @FY2 x get the bottom fence line or set
it to x

@MOVE x y move the turtle x cells in the X
axis and y cells in the Y axis

@SCRIPT @SCRIPT x get which script runs when the
turtle changes cells, or set it to x

@SHOW @SHOW 0/1 get whether the turtle is
displayed on the TRACKER
screen, or turn it on or off

@SPEED @SPEED x get the speed of the turtle’s
@STEP in cells per step or set it
to x

@STEP move @SPEED/100 cells forward
in @DIR, triggering @SCRIPT on
cell change

@WRAP @WRAP 1 get whether the turtle fence
mode is WRAP, or set it to WRAP
with 1

@X @X x get the turtle X coordinate, or set
it to x

@Y @Y x get the turtle Y coordinate, or set
it to x

A A x get / set the variable A, default 1
ABS x absolute value of x
ADD x y + add x and y together
AND x y && logical AND of x and y
AND3 x y z &&& logical AND of x, y and z
AND4 x y z a &&&& logical AND of x, y, z and a
ANS.A ANS.A n d send arc encoder event for ring

n, delta d
ANS.A.LED n x read arc LED buffer for ring n,

LED x clockwise from north
ANS.APP ANS.APP x get/set active app
ANS.G x y ANS.G x y z get/set grid key on/off state (z)

at position x, y
ANS.G.LED x y get grid LED buffer at position x,

y
ANS.G.P x y simulate grid key press at

position (x, y)
ARP.DIV v d set voice clock divisor

(euclidean length), range [1-32]

186

OP OP (set) (aliases) Description

ARP.ER v f d r set all euclidean rhythm
ARP.FIL v f set voice euclidean fill, use 1 for

straight clock division, range
[1-32]

ARP.GT v g set voice gate length [0-127],
scaled/synced to course
divisions of voice clock

ARP.HLD h 0 disables key hold mode, other
values enable

ARP.RES v reset voice clock/pattern on
next base clock tick

ARP.ROT v r set voice euclidean rotation,
range [-32, 32]

ARP.RPT v n s set voice pattern repeat, n times
[0-8], shifted by s semitones
[-24, 24]

ARP.SHIFT v o shift voice cv by standard tt
pitch value (e.g. N 6, V -1, etc)

ARP.SLEW v t set voice slew time in ms
ARP.STY y set base arp style [0-7]
AVG x y the average of x and y
B B x get / set the variable B, default 2
BCLR x y clear bit y in value x
BGET x y get bit y in value x
BPM x milliseconds per beat in BPM x
BREAK BRK halts execution of the current

script
BREV x reverse bit order in value x
BSET x y set bit y in value x
BTOG x y toggle bit y in value x
C C x get / set the variable C, default 3
CHAOS x get next value from chaos

generator, or set the current
value

CHAOS.ALG x get or set the algorithm for the
CHAOS generator. 0 = LOGISTIC,
1 = CUBIC, 2 = HENON, 3 =
CELLULAR

CHAOS.R x get or set the R parameter for
the CHAOS generator

CROW.AR x y z t Creates an envelope on output
x, rising in y ms, falling in z ms,
and reaching height t.

187

OP OP (set) (aliases) Description

CROW.C1 x Calls the function
ii.self.call1(x) on crow.

CROW.C2 x y Calls the function
ii.self.call2(x, y) on
crow.

CROW.C3 x y z Calls the function
ii.self.call3(x, y, z)
on crow.

CROW.C4 x y z t Calls the function
ii.self.call4(x, y, z,
t) on crow.

CROW.IN x Gets voltage at input x.
CROW.LFO x y z t Starts an envelope on output x

at rate y where 0 = 1Hz with
1v/octave scaling. z sets
amplitude and t sets skew for
assymetrical triangle waves.

CROW.OUT x Gets voltage of output x.
CROW.PULSE x y z
t

Creates a trigger pulse on output
x with duration y (ms) to voltage
z with polarity t.

CROW.Q0 Returns the result of calling the
function
crow.self.query0().

CROW.Q1 x Returns the result of calling the
function
crow.self.query1(x).

CROW.Q2 x y Returns the result of calling the
function
crow.self.query2(x, y).

CROW.Q3 x y z Returns the result of calling the
function
crow.self.query3(x, y,
z).

CROW.RST Calls the function
crow.reset() returning crow
to default state.

CROW.SEL x Sets target crow unit (1
(default), to 4).

CROW.SLEW x y Sets output x slew rate to y
milliseconds.

CROW.V x y Sets output x to value y. Use V
y for volts.

188

OP OP (set) (aliases) Description

CROW1: ... Send following CROW OPs to
unit 1 ignoring the currently
selected unit.

CROW2: ... Send following CROW OPs to
unit 2 ignoring the currently
selected unit.

CROW3: ... Send following CROW OPs to
unit 3 ignoring the currently
selected unit.

CROW4: ... Send following CROW OPs to
unit 4 ignoring the currently
selected unit.

CROWN: ... Send following CROW OPs to all
units starting with selected unit.

CV x CV x y CV target value
CV.CAL n mv1v
mv3v

Calibrate CV output n

CV.CAL.RESET n Reset calibration data for CV
output n

CV.GET x Get current CV value
CV.OFF x CV.OFF x y CV offset added to output
CV.SET x y Set CV value, ignoring slew
CV.SLEW x CV.SLEW x y Get/set the CV slew time in ms
CY.CV x get the current CV value for

channel x
CY.POS x CY.POS x y get / set position of channel x (x

= 0 to set all), position between
0-255

CY.PRE CY.PRE x return current preset / load
preset x

CY.RES x reset channel x (0 = all)
CY.REV x reverse channel x (0 = all)
D D x get / set the variable D, default 4
DEL x: ... Delay command by x ms
DEL.B
delay_time
bitmask: ...

Trigger the command up to 16
times at intervals of
delay_time ms. Active
intervals set in 16-bit bitmask,
LSB = immediate.

DEL.CLR Clear the delay buffer

189

OP OP (set) (aliases) Description

DEL.G x
delay_time num
denom: ...

Trigger the command once
immediately and x - 1 times at
ms intervals of delay_time *
(num/denom)^n where n
ranges from 0 to x - 1.

DEL.R x
delay_time: ...

Trigger the command following
the colon once immediately, and
delay x - 1 commands at
delay_time ms intervals

DEL.X x
delay_time: ...

Delay x commands at
delay_time ms intervals

DEVICE.FLIP Flip the screen/inputs/outputs
DIV x y / divide x by y
DR.P b p s Drum pattern helper, b is the

drum bank (0-4), p is the pattern
(0-215) and step is the step
number (0-15), returns 0 or 1

DR.T b p q l s Tresillo helper, b is the drum
bank (0-4), p is first pattern
(0-215), q is the second pattern
(0-215), l is length (1-64), and
step is the step number
(0-length-1), returns 0 or 1

DR.V p s Velocity helper. p is the pattern
(0-19). s is the step number
(0-15)

DRUNK DRUNK x changes by -1, 0, or 1 upon
each read saving its state,
setting will give it a new value
for the next read

DRUNK.MAX DRUNK.MAX x set the upper bound for DRUNK,
default 255

DRUNK.MIN DRUNK.MIN x set the lower bound for DRUNK,
default 0

DRUNK.SEED DRUNK.SEED x DRUNK.SDget / set the random number
generator seed for the DRUNK op

DRUNK.WRAP DRUNK.WRAP x should DRUNK wrap around
when it reaches it’s bounds,
default 0

ELIF x: ... if all previous IF / ELIF fail, and
x is not zero, execute command

ELSE: ... if all previous IF / ELIF fail,
excute command

EQ x y == does x equal y

190

OP OP (set) (aliases) Description

ER f l i Euclidean rhythm, f is fill (1-32),
l is length (1-32) and i is step
(any value), returns 0 or 1

ES.CLOCK x If II clocked, next pattern event
ES.CV x get the current CV value for

channel x
ES.MAGIC x Magic shape (1= halfspeed,

2=doublespeed, 3=linearize)
ES.MODE x Set pattern clock mode.

(0=normal, 1=II clock)
ES.PATTERN x Select playing pattern (0-15)
ES.PRESET x Recall preset x (0-7)
ES.RESET x Reset pattern to start (and start

playing)
ES.STOP x Stop pattern playback.
ES.TRANS x Transpose the current pattern
ES.TRIPLE x Recall triple shape (1-4)
EVERY x: ... EV run the command every x times

the command is called
EX EX x get or set currently selected unit

to x (1-4)
EX.A1 EX.A1 x get or set the left dual algorithm
EX.A12 x y set both dual algorithms
EX.A2 EX.A2 x get or set the right dual

algorithm
EX.AL.CLK send clock to Augustus Loop
EX.AL.P x set Augustus Loop pitch to value

x
EX.ALG EX.ALG x EX.A get or set the current algorithm

to x (single algorithms only)
EX.ALLOFF EX.AO all notes off
EX.CH x EX.# select default note channel (for

multi channel algorithms like
Poly FM)

EX.CTRL x y EX.C set I2C controller x to value y
EX.LP x get current state for loop x
EX.LP.CLR x clear loop x
EX.LP.DOWN x toggle octave down for loop x
EX.LP.DOWN? x return 1 if loop x is transposed

octave down, 0 otherwise
EX.LP.PLAY x toggle playback for loop x
EX.LP.REC x toggle recording for loop x

191

OP OP (set) (aliases) Description

EX.LP.REV x toggle reverse for loop x
EX.LP.REV? x returns 1 if loop x is reversed, 0

otherwise
EX.M.CC x y send MIDI CC message for

controller x (0..127) and value y
(0..127)

EX.M.CC# x y z send MIDI CC message on
channel x for controller y
(0..127) and value z (0..127)

EX.M.CH EX.M.CH x get or set the currently selected
MIDI channel (1-16)

EX.M.CLK send MIDI clock message
EX.M.CONT send MIDI Continue message
EX.M.N x y send MIDI Note On message for

note x (0..127) and velocity y
(0..127)

EX.M.N# x y z send MIDI Note On message on
channel x for note y (0..127) and
velocity z (0..127)

EX.M.NO x send MIDI Note off message for
note x (0..127)

EX.M.NO# x y send MIDI Note off message on
channel x for note y (0..127)

EX.M.PB x send MIDI Pitchbend message
EX.M.PRG x send MIDI Program Change

message
EX.M.START send MIDI Start message
EX.M.STOP send MIDI Stop message
EX.MAX x get the maximum possible value

for parameter x
EX.MAX1 x get left algorithm parameter

maximum value
EX.MAX2 x get right algorithm parameter

maximum value
EX.MIN x get the minimum possible value

for parameter x
EX.MIN1 x get left algorithm parameter

minimum value
EX.MIN2 x get right algorithm parameter

minimum value
EX.N# x y z send a note to channel x using

pitch y and velocity z (voice
allocated by the Disting)

192

OP OP (set) (aliases) Description

EX.NO# x y send a note off to channel x
using pitch y

EX.NOTE x y EX.N send a note using pitch x and
velocity y (voice allocated by the
Disting)

EX.NOTE.O x EX.NO send a note off using pitch x
EX.P1 x EX.P1 x y get left algorithm parameter x or

set it to value y
EX.P2 x EX.P2 x y get right algorithm parameter x

or set it to value y
EX.PARAM x EX.PARAM x y EX.P set parameter x to value y or get

the current parameter value
EX.PLAY x control WAV recorder playback:

1 to start, 0 to stop
EX.PRE1 x load left preset from x slot
EX.PRE2 x load right preset from x slot
EX.PRESET EX.PRESET x EX.PRE load preset x or get the currently

loaded preset
EX.PV x y set parameter x using a value

determined by scaling y from
0..16384 range.

EX.PV1 x y set left algorithm parameter x
using a value determined by
scaling y from 0..16384 range

EX.PV2 x y set right algorithm parameter x
using a value determined by
scaling y from 0..16384 range

EX.REC x control WAV recorder recording:
1 to start, 0 to stop

EX.RESET reset the currently loaded preset
EX.SAVE x save to preset x
EX.SAVE1 x save left preset to x slot
EX.SAVE2 x save right preset to x slot
EX.SB.CC x y send Select Bus CC message for

controller x (0..127) and value y
(0..127)

EX.SB.CH EX.SB.CH x get or set the currently selected
Select Bus channel (1-16)

EX.SB.CLK send Select Bus clock message
EX.SB.CONT send Select Bus Continue

message
EX.SB.N x y send Select Bus Note On

message for note x (0..127) and
velocity y (0..127)

193

OP OP (set) (aliases) Description

EX.SB.NO x send Select Bus Note off
message for note x (0..127)

EX.SB.PB x send Select Bus Pitchbend
message

EX.SB.PRG x send Select Bus Program
Change message

EX.SB.START send Select Bus Start message
EX.SB.STOP send Select Bus Stop message
EX.T x send a trigger to voice x with

medium velocity (use with SD
Triggers algo)

EX.TV x y send a trigger to voice x using
velocity y (use with SD Triggers
algo)

EX.VOX x y z EX.V send a note to voice x using
pitch y and velocity z

EX.VOX.O x EX.VO send a note off to voice x
EX.VOX.P x y EX.VP set voice x to pitch y
EX.Z1 EX.Z1 x get left Z knob value or set left Z

parameter (0..127 range)
EX.Z2 EX.Z2 x get right Z knob value or set

right Z parameter (0..127 range)
EX.ZO1 restore control for left Z knob

and input
EX.ZO2 restore control for right Z knob

and input
EX1: ... send following Disting ops to

unit 1 ignoring the currently
selected unit

EX2: ... send following Disting ops to
unit 2 ignoring the currently
selected unit

EX3: ... send following Disting ops to
unit 3 ignoring the currently
selected unit

EX4: ... send following Disting ops to
unit 4 ignoring the currently
selected unit

EXP x exponentiation table lookup.
0-16383 range (V 0-10)

EZ x ! x is 0, equivalent to logical NOT

194

OP OP (set) (aliases) Description

FADER x FB Reads the value of the FADER
slider x; default return range is
from 0 to 16383. Up to four
Faderbanks can be addressed; x
value between 1 and 16
correspond to Faderbank 1, x
between 17 and 32 to Faderbank
2, etc…

FADER.CAL.MAX x FB.C.MAXReads FADER x maximum
position and assigns the
maximum point

FADER.CAL.MIN x FB.C.MINReads FADER x minimum
position and assigns a zero
value

FADER.CAL.RESET
x

FB.C.R Resets the calibration for FADER
x

FADER.SCALE x y
z

FB.S Set static scaling of the FADER
x to between min and max.

FLIP FLIP x returns the opposite of its
previous state (0 or 1) on each
read (also settable)

FR FR x get/set the return value when a
script is called as a function

G.BTN id x y w h
type level
script

initialize button

G.BTN.EN id G.BTN.EN id x enable/disable button or check
if enabled

G.BTN.L id G.BTN.L id
level

get/set button level

G.BTN.PR id
action

emulate button press/release

G.BTN.SW id switch button
G.BTN.V id G.BTN.V id

value
get/set button value

G.BTN.X id G.BTN.X id x get/set button x coordinate
G.BTN.Y id G.BTN.Y id y get/set button y coordinate
G.BTNI id of last pressed button
G.BTNL G.BTNL level get/set level of last pressed

button
G.BTNV G.BTNV value get/set value of last pressed

button
G.BTNX G.BTNX x get/set x of last pressed button
G.BTNY G.BTNY y get/set y of last pressed button

195

OP OP (set) (aliases) Description

G.BTX id x y w h
type level
script columns
rows

initialize multiple buttons

G.CLR clear all LEDs
G.DIM level set dim level
G.FDR id x y w h
type level
script

initialize fader

G.FDR.EN id G.FDR.EN id x enable/disable fader or check if
enabled

G.FDR.L id G.FDR.L id
level

get/set fader level

G.FDR.N id G.FDR.N id
value

get/set fader value

G.FDR.PR id
value

emulate fader press

G.FDR.V id G.FDR.V id
value

get/set scaled fader value

G.FDR.X id G.FDR.X id x get/set fader x coordinate
G.FDR.Y id G.FDR.Y id y get/set fader y coordinate
G.FDRI id of last pressed fader
G.FDRL G.FDRL level get/set level of last pressed

fader
G.FDRN G.FDRN value get/set value of last pressed

fader
G.FDRV G.FDRV value get/set scaled value of last

pressed fader
G.FDRX G.FDRX x get/set x of last pressed fader
G.FDRY G.FDRY y get/set y of last pressed fader
G.FDX id x y w h
type level
script columns
rows

initialize multiple faders

G.GBT group id x
y w h type level
script

initialize button in group

G.GBTN.C group get count of currently pressed
G.GBTN.H group get button block height
G.GBTN.I group
index

get id of pressed button

G.GBTN.L group
odd_level
even_level

set level for group buttons

196

OP OP (set) (aliases) Description

G.GBTN.V group
value

set value for group buttons

G.GBTN.W group get button block width
G.GBTN.X1 group get leftmost pressed x
G.GBTN.X2 group get rightmost pressed x
G.GBTN.Y1 group get highest pressed y
G.GBTN.Y2 group get lowest pressed y
G.GBX group id x
y w h type level
script columns
rows

initialize multiple buttons in
group

G.GFD grp id x y
w h type level
script

initialize fader in group

G.GFDR.L group
odd_level
even_level

set level for group faders

G.GFDR.N group
value

set value for group faders

G.GFDR.RN group
min max

set range for group faders

G.GFDR.V group
value

set scaled value for group faders

G.GFX group id x
y w h type level
script columns
rows

initialize multiple faders in group

G.GRP G.GRP id get/set current group
G.GRP.EN id G.GRP.EN id x enable/disable group or check if

enabled
G.GRP.RST id reset all group controls
G.GRP.SC id G.GRP.SC id

script
get/set group script

G.GRP.SW id switch groups
G.GRPI get last group
G.KEY x y action emulate grid press
G.LED x y G.LED x y

level
get/set LED

G.LED.C x y clear LED
G.RCT x1 y1 x2
y2 fill border

draw rectangle

G.REC x y w h
fill border

draw rectangle

197

OP OP (set) (aliases) Description

G.ROTATE x set grid rotation
G.RST full grid reset
GT x y > x is greater than y
GTE x y >= x is greater than or equal to y
HZ x converts 1V/OCT value x to

Hz/Volt value, useful for
controlling non-euro synths like
Korg MS-20

I I x get / set the per-script variable
I. See also L: in control flow

I1 get the first parameter when
executing a script as a function

I2 get the second parameter when
executing a script as a function

I2M.AT x Send MIDI After Touch message
with value x (0..127)

I2M.B.CLR Clear the buffer, erasing all
recorded notes in the buffer

I2M.B.DIR x Set the play direction x (0..2) of
the buffer

I2M.B.END x Add a negative offset of x ms
(0..32767) to the end of the
buffer

I2M.B.FB x Set the feedback length x
(0..255) of the buffer

I2M.B.L x Set the length of the buffer to x
ms (0..32767)

I2M.B.MODE x Set the buffer mode to x (0..1).
1) Digital 2) Tape

I2M.B.NOFF x Set the note offset of recorded
notes to x semitones (-127..127)

I2M.B.NSHIFT x Set the note shift of recorded
notes to x semitones (-127..127)

I2M.B.R x Turn recording of notes into the
buffer on or off

I2M.B.SPE x Set the playing speed x
(1..32767) of the buffer. x =
100 is equivalent to ‘normal
speed’, x = 50 means double
the speed, x = 200 means half
the speed, etc.

I2M.B.START x Add an offset of x ms (0..32767)
to the start of the buffer

198

OP OP (set) (aliases) Description

I2M.B.TOFF x Set the note duration offset
(‘time offset’) of recorded notes
to x ms (-16384..16383)

I2M.B.TSHIFT x Set the note duration shift (‘time
shift’) of recorded notes to x ms
(-16384..16383)

I2M.B.VOFF x Set the velocity offset of
recorded notes to x (-127..127)

I2M.B.VSHIFT x Set the velocity shift of recorded
notes to x (-127..127)

I2M.C# ch x y z Play chord x (1..8) with root note
y (-127..127) and velocity z
(1..127) on channel ch (1..32)

I2M.C.ADD x y I2M.C+ Add relative note y (-127..127)
to chord x (0..8), use x = 0 to
add to all chords

I2M.C.B x y Clear and define chord x (0..8)
using reverse binary notation
(R...)

I2M.C.CLR x Clear chord x (0..8), use x = 0
to clear all chords

I2M.C.DEL x y Delete note at index y (0..7)
from chord x (0..8), use x = 0
to delete from all chords

I2M.C.DIR x y Set play direction for chord x
(0..8) to direction y (0..8)

I2M.C.DIS x y z Set distortion of chord x (0..8) to
y (-127..127) with anchor point z
(0..16), use x = 0 to set for all
chords

I2M.C.INS x y z Add note z (-127..127) to chord
x (0..8) at index y (0..7), with z
relative to the root note; use x =
0 to insert into all chords

I2M.C.INV x y Set inversion of chord x (0..8) to
y (-32..32), use x = 0 to set for
all chords

I2M.C.L x I2M.C.L x y Get current length / Set length of
chord x (0..8) to y (1..8), use x
= 0 to set length of all chords

I2M.C.QN x y z Get the transformed note
number of a chord note for
chord x (1..8) with root note y
(-127..127) at index z (0..7)

199

OP OP (set) (aliases) Description

I2M.C.QV x y z Get the transformed note
velocity of a chord note for
chord x (1..8) with root velocity
y (1..127) at index z (0..7)

I2M.C.REF x y z Set reflection of chord x (0..8) to
y iterations (-127..127) with
anchor point z (0..16), use x =
0 to set for all chords

I2M.C.REV x y Set reversal of notes in chord x
(0..8) to y. y = 0 or an even
number means not reversed, y =
1 or an uneven number means
reversed. Use x = 0 to set for
all chords.

I2M.C.RM x y I2M.C- Remove note y (-127..127) from
chord x (0..8), use x = 0 to
remove from all chords

I2M.C.ROT x y Set rotation of notes in chord x
(0..8) to y steps (-127..127), use
x = 0 to set for all chords

I2M.C.SC x y Set scale for chord x (0..8)
based on chord y (0..8), use x =
0 to set for all chords, use y =
0 to remove scale

I2M.C.SET x y z Set note at index y (0..7) in
chord x (0..8) to note z
(-127..127), use x = 0 to set in
all chords

I2M.C.STR x y Set strumming of chord x (0..8)
to x ms (0..32767), use x = 0
to set for all chords

I2M.C.TCUR w x y
z

I2M.C.T~Set time curve to strumming for
chord w (0..8) with curve type x
(0..5), start value y% (0..32767)
and end value z% (0..32767),
use w = 0 to set for all chords,
use x = 0 to turn off

I2M.C.TRP x y Set transposition of chord x
(0..8) to y (-127..127), use x =
0 to set for all chords

I2M.C.VCUR w x y
z

I2M.C.V~Set velocity curve for chord w
(0..8) with curve type x (0..5),
start value y% (0..32767) and
end value z% (0..32767), use w
= 0 to set for all chords, use x
= 0 to turn off

200

OP OP (set) (aliases) Description

I2M.CC x y Send MIDI CC message for
controller x (0..127) with value y
(0..127)

I2M.CC# ch x y Send MIDI CC message for
controller x (0..127) with value y
(0..127) on channel ch (1..32)

I2M.CC.OFF x I2M.CC.OFF x y Get current offset / Set offset of
values of controller x (0..127) to
y (-127..127)

I2M.CC.OFF# ch x I2M.CC.OFF# ch
x y

Get current offset / Set offset of
values of controller x (0..127) to
y (-127..127) for channel ch
(1..32)

I2M.CC.SET x y Send MIDI CC message for
controller x (0..127) with value y
(0..127), bypassing any slew
settings

I2M.CC.SET# ch
x y

Send MIDI CC message for
controller x (0..127) with value y
(0..127) on channel ch (1..32),
bypassing any slew settings

I2M.CC.SLEW x I2M.CC.SLEW x
y

Get current slew time for
controller x / Set slew time for
controller x (0..127) to y ms
(0..32767)

I2M.CC.SLEW# ch
x

I2M.CC.SLEW#
ch x y

Get current slew time for
controller x / Set slew time for
controller x (0..127) to y ms
(0..32767) for channel ch (1..32)

I2M.CCV x y Send MIDI CC message for
controller x (0..127) with volt
value y (0..16383, 0..+10V)

I2M.CCV# ch x y Send MIDI CC message for
controller x (0..127) with volt
value y (0..16383, 0..+10V) on
channel ch (1..32)

I2M.CH I2M.CH x I2M.# Get currently set MIDI channel /
Set MIDI channel x (1..16 for
TRS, 17..32 for USB) for MIDI out

I2M.CHORD x y z I2M.C Play chord x (1..8) with root note
y (-127..127) and velocity z
(1..127)

I2M.CLK Send MIDI Clock message, this
still needs improvement …

I2M.CONT Send MIDI Clock Continue
message

201

OP OP (set) (aliases) Description

I2M.MAX x y Set maximum note number for
MIDI notes to x (0..127), using
mode y (0..3), for current
channel

I2M.MAX# ch x y Set maximum note number for
MIDI notes to x (0..127), using
mode y (0..3), for channel ch
(0..32)

I2M.MIN x y Set minimum note number for
MIDI notes to x (0..127), using
mode y (0..3), for current
channel

I2M.MIN# ch x y Set minimum note number for
MIDI notes to x (0..127), using
mode y (0..3), for channel ch
(0..32)

I2M.MUTE I2M.MUTE x Get mute state / Set mute state
of current MIDI channel to x
(0..1)

I2M.MUTE# I2M.MUTE# ch x Get mute state / Set mute state
of MIDI channel ch to x (0..1)

I2M.N# ch x y Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) on channel ch
(1..32)

I2M.NO# ch x Send a manual MIDI Note Off
message for note number x
(0..127) on channel ch (1..32)

I2M.NOTE x y I2M.N Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) on current
channel

I2M.NOTE.O x I2M.NO Send a manual MIDI Note Off
message for note number x
(0..127)

I2M.NRPN x y z Send MIDI NRPN message
(high-res CC) for parameter MSB
x and LSB y with value y
(0..16383)

I2M.NRPN# ch x y
z

Send MIDI NRPN message
(high-res CC) for parameter MSB
x and LSB y with value y
(0..16383) on channel ch (1..32)

I2M.NRPN.OFF x y I2M.NRPN.OFF x
y z

Get current offset / Set offset of
values of NRPN messages to z
(-16384..16383)

202

OP OP (set) (aliases) Description

I2M.NRPN.OFF#
ch x y

I2M.NRPN.OFF#
ch x y z

Get current offset / Set offset of
values of NRPN messages to z
(-16384..16383) for channel ch
(1..32)

I2M.NRPN.SET x
y z

Send MIDI NRPN message for
parameter MSB x and LSB y
with value y (0..16383),
bypassing any slew settings

I2M.NRPN.SET#
ch x y z

Send MIDI NRPN message for
parameter MSB x and LSB y
with value y (0..16383) on
channel ch (1..32), bypassing
any slew settings

I2M.NRPN.SLEW x
y

I2M.NRPN.SLEW
x y z

Get current slew time / Set slew
time for NRPN messages to z
ms (0..32767)

I2M.NRPN.SLEW#
ch x y

I2M.NRPN.SLEW#
ch x y z

Get current slew time / Set slew
time for NRPN messages to z
ms (0..32767) for channel ch
(1..32)

I2M.NT x y z Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) and note
duration z ms (0..32767)

I2M.NT# ch x y z Send MIDI Note On message for
note number x (0..127) with
velocity y (1..127) and note
duration z ms (0..32767) on
channel ch (1..32)

I2M.PANIC Send MIDI Note Off messages
for all notes on all channels, and
reset note duration, shift,
repetition, ratcheting, min/max

I2M.PB x Send MIDI Pitch Bend message
with value x (-8192..8191)

I2M.PRG x Send MIDI Program Change
message for program x (0..127)

I2M.Q.CC x Get current value (0..127) of
controller x (0..127) received via
MIDI in

I2M.Q.CH I2M.Q.CH x I2M.Q.# Get currently set MIDI channel /
Set MIDI channel x (1..16) for
MIDI in

I2M.Q.LATCH x Turn on or off ‘latching’ for MIDI
notes received via MIDI in

203

OP OP (set) (aliases) Description

I2M.Q.LC Get the latest controller number
(0..127) received via MIDI in

I2M.Q.LCC Get the latest controller value
(0..127) received via MIDI in

I2M.Q.LCH Get the latest channel (1..16)
received via MIDI in

I2M.Q.LN Get the note number (0..127) of
the latest Note On received via
MIDI in

I2M.Q.LO Get the note number (0..127) of
the latest Note Off received via
MIDI in

I2M.Q.LV Get the velocity (1..127) of the
latest Note On received via MIDI
in

I2M.Q.NOTE x I2M.Q.N Get x (0..7) last note number
(0..127) received via MIDI in

I2M.Q.VEL x I2M.Q.V Get x (0..7) last note velocity
(1..127) received via MIDI in

I2M.RAT I2M.RAT x Get current ratcheting / Set
ratcheting of MIDI notes to x
ratchets (1..127) for current
channel

I2M.RAT# ch x Get current ratcheting / Set
ratcheting of MIDI notes to x
ratchets (1..127) for channel ch
(0..32)

I2M.REP I2M.REP x Get current repetition / Set
repetition of MIDI notes to x
repetitions (1..127) for current
channel

I2M.REP# ch x Get current repetition / Set
repetition of MIDI notes to x
repetitions (1..127) for channel
ch (0..32)

I2M.S# ch I2M.S# ch x Get current transposition / Set
transposition of MIDI notes to x
semitones (-127..127) for
channel ch (0..32)

I2M.SHIFT I2M.SHIFT x I2M.S Get current transposition / Set
transposition of MIDI notes to x
semitones (-127..127) for
current channel

I2M.SOLO I2M.SOLO x Get solo state / Set solo state of
current MIDI channel to x (0..1)

204

OP OP (set) (aliases) Description

I2M.SOLO# I2M.SOLO# ch x Get solo state / Set solo state of
MIDI channel ch to x (0..1)

I2M.START Send MIDI Clock Start message
I2M.STOP Send MIDI Clock Stop message
I2M.T# ch I2M.T# ch x Get current note duration / Set

note duration of MIDI notes to x
ms (0..32767) for channel ch
(0..32).

I2M.TIME I2M.TIME x I2M.T Get current note duration / Set
note duration of MIDI notes to x
ms (0..32767) for current
channel

IF x: ... if x is not zero execute
command

IIA IIA address Set I2C address or get the
currently selected address

IIB cmd Execute the specified query and
get a byte value back

IIB1 cmd value Execute the specified query with
1 parameter and get a byte value
back

IIB2 cmd value1
value2

Execute the specified query with
2 parameters and get a byte
value back

IIB3 cmd value1
value2 value3

Execute the specified query with
3 parameters and get a byte
value back

IIBB1 cmd value Execute the specified query with
1 byte parameter and get a byte
value back

IIBB2 cmd
value1 value2

Execute the specified query with
2 byte parameters and get a byte
value back

IIBB3 cmd value1
value2 value3

Execute the specified query with
3 byte parameters and get a byte
value back

IIQ cmd Execute the specified query and
get a value back

IIQ1 cmd value Execute the specified query with
1 parameter and get a value
back

IIQ2 cmd value1
value2

Execute the specified query with
2 parameters and get a value
back

205

OP OP (set) (aliases) Description

IIQ3 cmd value1
value2 value3

Execute the specified query with
3 parameters and get a value
back

IIQB1 cmd value Execute the specified query with
1 byte parameter and get a value
back

IIQB2 cmd
value1 value2

Execute the specified query with
2 byte parameters and get a
value back

IIQB3 cmd value1
value2 value3

Execute the specified query with
3 byte parameters and get a
value back

IIS cmd Execute the specified command
IIS1 cmd value Execute the specified command

with 1 parameter
IIS2 cmd value1
value2

Execute the specified command
with 2 parameters

IIS3 cmd value1
value2 value3

Execute the specified command
with 3 parameters

IISB1 cmd value Execute the specified command
with 1 byte parameter

IISB2 cmd
value1 value2

Execute the specified command
with 2 byte parameters

IISB3 cmd value1
value2 value3

Execute the specified command
with 3 byte parameters

IN Get the value of IN jack
(0-16383)

IN.CAL.MAX Reads the input CV and assigns
the voltage to the max point

IN.CAL.MIN Reads the input CV and assigns
the voltage to the zero point

IN.CAL.RESET Resets the input CV calibration
IN.SCALE min max Set static scaling of the IN CV to

between min and max.
INIT clears all state data
INIT.CV x clears all parameters on CV

associated with output x
INIT.CV.ALL clears all parameters on all CV’s
INIT.DATA clears all data held in all

variables
INIT.P x clears pattern number x
INIT.P.ALL clears all patterns
INIT.SCENE loads a blank scene

206

OP OP (set) (aliases) Description

INIT.SCRIPT x clear script number x
INIT.SCRIPT.ALL clear all scripts
INIT.TIME x clear time on trigger x
INIT.TR x clear all parameters on trigger x
INIT.TR.ALL clear all triggers
INR l x h >< x is greater than l and less than

h (within range)
INRI l x h >=< x is greater than or equal to l

and less than or equal to h
(within range, inclusive)

J J x get / set the per-script variable J
JF.ADDR x Sets JF II address (1 = primary, 2

= secondary). Use with only one
JF on the bus! Saves to JF
internal memory, so only
one-time config is needed.

JF.CURVE Gets value of CURVE knob.
JF.FM Gets value of FM knob.
JF.GOD x Redefines C3 to align with the

‘God’ note. x = 0 sets A to 440, x
= 1 sets A to 432.

JF.INTONE Gets value of INTONE knob and
CV offset.

JF.MODE x Set the current choice of
standard functionality, or Just
Type alternate modes (Speed
switch to Sound for Synth,
Shape for Geode). You’ll likely
want to put JF.MODE x in your
Teletype INIT scripts. x =
nonzero activates alternative
modes. 0 restores normal.

207

OP OP (set) (aliases) Description

JF.NOTE x y Synth: polyphonically allocated
note sequencing. Works as
JF.VOX with chan selected
automatically. Free voices will
be taken first. If all voices are
busy, will steal from the voice
which has been active the
longest. x = pitch relative to C3,
y = velocity. Geode: works as
JF.VOX with dynamic allocation
of channel. Assigns the
rhythmic stream to the oldest
unused channel, or if all are busy,
the longest running channel. x =
division, y = number of repeats.

JF.PITCH x y Change pitch without
retriggering. x = channel, y =
pitch relative to C3.

JF.POLY x y As JF.NOTE but across dual JF.
Switches between primary and
secondary units every 6 notes or
until reset using
JF.POLY.RESET.

JF.POLY.RESET Resets JF.POLY note count.
JF.QT x When non-zero, all events are

queued & delayed until the next
quantize event occurs. Using
values that don’t align with the
division of rhythmic streams will
cause irregular patterns to
unfold. Set to 0 to deactivate
quantization. x = division, 0
deactivates quantization, 1 to 32
sets the subdivision & activates
quantization.

JF.RAMP Gets value of RAMP knob.
JF.RMODE x Set the RUN state of Just

Friends when no physical jack is
present. (0 = run off, non-zero =
run on)

208

OP OP (set) (aliases) Description

JF.RUN x Send a ‘voltage’ to the RUN
input. Requires JF.RMODE 1 to
have been executed, or a
physical cable in JF’s input.
Thus Just Friend’s RUN modes
are accessible without needing a
physical cable & control voltage
to set the RUN parameter. use
JF.RUN V x to set to x volts.
The expected range is V -5 to V 5

JF.SEL x Sets target JF unit (1 = primary,
2 = secondary).

JF.SHIFT x Shifts the transposition of Just
Friends, regardless of speed
setting. Shifting by V 1 doubles
the frequency in sound, or
doubles the rate in shape. x =
pitch, use N x for semitones, or
V y for octaves.

JF.SPEED Gets value of SPEED switch (1 =
sound, 0 = shape).

JF.TICK x Sets the underlying timebase of
the Geode. x = clock. 0 resets
the timebase to the start of
measure. 1 to 48 shall be sent
repetitively. The value
representing ticks per measure.
49 to 255 sets beats-per-minute
and resets the timebase to start
of measure.

JF.TIME Gets value of TIME knob and CV
offset.

JF.TR x y Simulate a TRIGGER input. x is
channel (0 = all primary JF
channels, 1..6 = primary JF,
7..12 = secondary JF, -1 = all
channels both JF) and y is state
(0 or 1)

JF.TSC Gets value of MODE switch (0 =
transient, 1 = sustain, 2 = cycle).

JF.TUNE x y z Adjust the tuning ratios used by
the INTONE control. x = channel,
y = numerator (set the multiplier
for the tuning ratio), z =
denominator (set the divisor for
the tuning ratio). JF.TUNE 0 0
0 resets to default ratios.

209

OP OP (set) (aliases) Description

JF.VOX x y z Synth mode: create a note at the
specified channel, of the defined
pitch & velocity. All channels can
be set simultaneously with a
chan value of 0. x = channel, y =
pitch relative to C3, z = velocity
(like JF.VTR). Geode mode:
Create a stream of rhythmic
envelopes on the named
channel. x = channel, y =
division, z = number of repeats.

JF.VTR x y Like JF.TR with added volume
control. Velocity is scaled with
volts, so try V 5 for an output
trigger of 5 volts. Channels
remember their latest velocity
setting and apply it regardless of
TRIGGER origin (digital or
physical). x = channel, 0 sets all
channels. y = velocity, amplitude
of output in volts. eg JF.VTR 1
V 4.

JF0: ... Send following JF OPs to both
units starting with selected unit.

JF1: ... Send following JF OPs to unit 1
ignoring the currently selected
unit.

JF2: ... Send following JF OPs to unit 2
ignoring the currently selected
unit.

JI x y just intonation helper, precision
ratio divider normalised to 1V

K K x get / set the per-script variable K
KILL clears stack, clears delays,

cancels pulses, cancels slews,
disables metronome

KR.CLK x advance the clock for channel x
(channel must have teletype
clocking enabled)

KR.CUE KR.CUE x get/set the cued pattern
KR.CV x get the current CV value for

channel x
KR.DIR KR.DIR x get/set the step direction
KR.DUR x get the current duration value for

channel x

210

OP OP (set) (aliases) Description

KR.L.LEN x y KR.L.LEN x y z get length of track x, parameter
y / set to z

KR.L.ST x y KR.L.ST x y z get loop start for track x,
parameter y / set to z

KR.MUTE x KR.MUTE x y get/set mute state for channel x
(1 = muted, 0 = unmuted)

KR.PAT KR.PAT x get/set current pattern
KR.PERIOD KR.PERIOD x get/set internal clock period
KR.PG KR.PG x get/set the active page
KR.POS x y KR.POS x y z get/set position z for track z,

parameter y
KR.PRE KR.PRE x return current preset / load

preset x
KR.RES x y reset position to loop start for

track x, parameter y
KR.SCALE KR.SCALE x get/set current scale
KR.TMUTE x toggle mute state for channel x
L x y: ... run the command sequentially

with I values from x to y
LAST x get value in milliseconds since

last script run time
LIM x y z limit the value x to the range y to

z inclusive
LIVE.DASH x LIVE.D Show the dashboard with index

x
LIVE.GRID LIVE.G Show grid visualizer in live mode
LIVE.OFF LIVE.O Show the default live mode

screen
LIVE.VARS LIVE.V Show variables in live mode
LROT x y <<< circular left shift x by y bits,

wrapping around when bits fall
off the end

LSH x y << left shift x by y bits, in effect
multiply x by 2 to the power of y

LT x y < x is less than y
LTE x y <= x is less than or equal to y
LV.CV x get the current CV value for

channel x
LV.L.DIR LV.L.DIR x get/set loop direction
LV.L.LEN LV.L.LEN x get/set loop length
LV.L.ST LV.L.ST x get/set loop start
LV.POS LV.POS x get/set current position

211

OP OP (set) (aliases) Description

LV.PRE LV.PRE x return current preset / load
preset x

LV.RES x reset, 0 for soft reset (on next
ext. clock), 1 for hard reset

M M x get/set metronome interval to x
(in ms), default 1000, minimum
value 25

M! M! x get/set metronome to
experimental interval x (in ms),
minimum value 2

M.ACT M.ACT x get/set metronome activation to
x (0/1), default 1 (enabled)

M.RESET hard reset metronome count
without triggering

MA.CLR clear all connections
MA.COL col MA.COL col

value
get or set column col (as a 16
bit unsigned value where each
bit represents a connection)

MA.OFF x y disconnect row x and column y
in the current program

MA.ON x y connect row x and column y in
the current program
(rows/columns are 0-based)

MA.PCLR pgm clear all connections in program
pgm

MA.PCOL pgm col MA.PCOL pgm
col value

get or set column col in
program pgm

MA.PGM pgm select the current program
(1-based)

MA.POFF x y pgm connect row x and column y in
program pgm

MA.PON pgm x y connect row x and column y in
program pgm

MA.PROW pgm row MA.PROW pgm
row value

get or set row row in program
pgm

MA.PSET pgm x y
state

set the connection at row x and
column y in program pgm to
state (1 - on, 0 - off)

MA.RESET reset program sequencer
MA.ROW row MA.ROW row

value
get or set row row

MA.SELECT x select the default matrixarchate
module, default 1

212

OP OP (set) (aliases) Description

MA.SET x y state set the connection at row x and
column y to state (1 - on, 0 -
off)

MA.STEP advance program sequencer
MAX x y return the maximum of x and y
ME.CV x get the current CV value for

channel x
ME.PERIOD ME.PERIOD x get/set internal clock period
ME.PRE ME.PRE x return current preset / load

preset x
ME.RES x reset channel x (0 = all), also

used as “start”
ME.SCALE ME.SCALE x get/set current scale
ME.STOP x stop channel x (0 = all)
MI.$ x MI.$ x y assign MIDI event type x to

script y
MI.C get the controller number

(0..127) at index specified by
variable I

MI.CC get the controller value (0..127)
at index specified by variable I

MI.CCH get the controller event channel
(1..16) at index specified by
variable I

MI.CCV get the controller value scaled to
0..+10V range at index specified
by variable I

MI.CL get the number of controller
events

MI.CLKD MI.CLKD x set clock divider to x (1-24) or
get the current divider

MI.CLKR reset clock counter
MI.LC get the latest controller number

(0..127)
MI.LCC get the latest controller value

(0..127)
MI.LCCV get the latest controller value

scaled to 0..16383 range
(0..+10V)

MI.LCH get the latest channel (1..16)
MI.LE get the latest event type
MI.LN get the latest Note On (0..127)

213

OP OP (set) (aliases) Description

MI.LNV get the latest Note On scaled to
teletype range (shortcut for N
MI.LN)

MI.LO get the latest Note Off (0..127)
MI.LV get the latest velocity (0..127)
MI.LVV get the latest velocity scaled to

0..16383 range (0..+10V)
MI.N get the Note On (0..127) at index

specified by variable I
MI.NCH get the Note On event channel

(1..16) at index specified by
variable I

MI.NL get the number of Note On
events

MI.NV get the Note On scaled to
0..+10V range at index specified
by variable I

MI.O get the Note Off (0..127) at index
specified by variable I

MI.OCH get the Note Off event channel
(1..16) at index specified by
variable I

MI.OL get the number of Note Off
events

MI.V get the velocity (0..127) at index
specified by variable I

MI.VV get the velocity scaled to 0..10V
range at index specified by
variable I

MID.SHIFT o shift pitch CV by standard
Teletype pitch value (e.g. N 6, V
-1, etc)

MID.SLEW t set pitch slew time in ms
(applies to all allocation styles
except FIXED)

MIN x y return the minimum of x and y
MOD x y % find the remainder after division

of x by y
MP.PRESET x set Meadowphysics to preset x

(indexed from 0)
MP.RESET x reset countdown for channel x

(0 = all, 1-8 = individual
channels)

MP.STOP x reset channel x (0 = all, 1-8 =
individual channels)

214

OP OP (set) (aliases) Description

MUL x y * multiply x and y together
MUTE x MUTE x y Disable trigger input x
N x converts an equal temperament

note number to a value usable
by the CV outputs (x in the range
-127 to 127)

N.B d N.B r s get degree d of scale/set scale
root to r, scale to s, s is either
bit mask (s >= 1) or scale preset
(s < 1)

N.BX i d N.BX i r s multi-index version of N.B, scale
at i (index) 0 is shared with N.B

N.C r c d Note Chord operator, r is the
root note (0-127), c is the chord
(0-12) and d is the degree
(0-3), returns a value from the N
table.

N.CS r s d c Note Chord Scale operator, r is
the root note (0-127), s is the
scale (0-8), d is the scale
degree (1-7) and c is the chord
component (0-3), returns a
value from the N table.

N.S r s d Note Scale operator, r is the root
note (0-127), s is the scale
(0-8) and d is the degree (1-7),
returns a value from the N table.

NE x y != , XOR x is not equal to y
NR p m f s Numeric Repeater, p is prime

pattern (0-31), m is & mask
(0-3), f is variation factor
(0-16) and s is step (0-15),
returns 0 or 1

NZ x x is not 0
O O x auto-increments after each

access, can be set, starting
value 0

O.INC O.INC x how much to increment O by on
each invocation, default 1

O.MAX O.MAX x the upper bound for O, default 63
O.MIN O.MIN x the lower bound for O, default 0
O.WRAP O.WRAP x should O wrap when it reaches

its bounds, default 1
OR x y || logical OR of x and y
OR.BANK x Select preset bank x (1-8)

215

OP OP (set) (aliases) Description

OR.CLK x Advance track x (1-4)
OR.CVA x Select tracks for CV A where x is

a binary number representing
the tracks

OR.CVB x Select tracks for CV B where x is
a binary number representing
the tracks

OR.DIV x Set divisor for selected track to
x (1-16)

OR.GRST x Global reset (x can be any value)
OR.MUTE x Mute trigger selected by

OR.TRK (0 = on, 1 = mute)
OR.PHASE x Set phase for selected track to x

(0-16)
OR.PRESET x Select preset x (1-8)
OR.RELOAD x Reload preset or bank (0 -

current preset, 1 - current bank,
2 - all banks)

OR.ROTS x Rotate scales by x (1-15)
OR.ROTW x Rotate weights by x (1-3)
OR.RST x Reset track x (1-4)
OR.SCALE x Select scale x (1-16)
OR.TRK x Choose track x (1-4) to be used

by OR.DIV, OR.PHASE, OR.WGT
or OR.MUTE

OR.WGT x Set weight for selected track to
x (1-8)

OR3 x y z ||| logical OR of x, y and z
OR4 x y z a |||| logical OR of x, y, z and a
OTHER: ... runs the command when the

previous EVERY/SKIP did not
run its command.

OUTR l x h <> x is less than l or greater than h
(out of range)

OUTRI l x h <=> x is less than or equal to l or
greater than or equal to h (out of
range, inclusive)

P x P x y get/set the value of the working
pattern at index x

P.+ x y increase the value of the
working pattern at index x by y

P.+W x y a b increase the value of the
working pattern at index x by y
and wrap it to a..b range

216

OP OP (set) (aliases) Description

P.- x y decrease the value of the
working pattern at index x by y

P.-W x y a b decrease the value of the
working pattern at index x by y
and wrap it to a..b range

P.END P.END x get/set the end location of the
working pattern, default 63

P.HERE P.HERE x get/set value at current index of
working pattern

P.I P.I x get/set index position for the
working pattern.

P.INS x y insert value y at index x of
working pattern, shift later
values down, destructive to loop
length

P.L P.L x get/set pattern length of the
working pattern, non-destructive
to data

P.MAP: ... apply the ‘function’ to each value
in the active pattern, I takes
each pattern value

P.MAX find the first maximum value in
the pattern between the START
and END for the working pattern
and return its index

P.MIN find the first minimum value in
the pattern between the START
and END for the working pattern
and return its index

P.N P.N x get/set the pattern number for
the working pattern, default 0

P.NEXT P.NEXT x increment index of working
pattern then get/set value

P.POP return and remove the value
from the end of the working
pattern (like a stack), destructive
to loop length

P.PREV P.PREV x decrement index of working
pattern then get/set value

P.PUSH x insert value x to the end of the
working pattern (like a stack),
destructive to loop length

P.REV reverse the values in the active
pattern (between its START and
END)

217

OP OP (set) (aliases) Description

P.RM x delete index x of working
pattern, shift later values up,
destructive to loop length

P.RND return a value randomly selected
between the start and the end
position

P.ROT n rotate the values in the active
pattern n steps (between its
START and END, negative
rotates backward)

P.SEED P.SEED x P.SD get / set the random number
generator seed for the P.RND
and PN.RND ops

P.SHUF shuffle the values in active
pattern (between its START and
END)

P.START P.START x get/set the start location of the
working pattern, default 0

P.WRAP P.WRAP x when the working pattern
reaches its bounds does it wrap
(0/1), default 1 (enabled)

PARAM PRM Get the value of PARAM knob
(0-16383)

PARAM.CAL.MAX Reads the Parameter Knob
maximum position and assigns
the maximum point

PARAM.CAL.MIN Reads the Parameter Knob
minimum position and assigns a
zero value

PARAM.CAL.RESET Resets the Parameter Knob
calibration

PARAM.SCALE min
max

Set static scaling of the PARAM
knob to between min and max.

PN x y PN x y z get/set the value of pattern x at
index y

PN.+ x y z increase the value of pattern x
at index y by z

PN.+W x y z a b increase the value of pattern x
at index y by z and wrap it to
a..b range

PN.- x y z decrease the value of pattern x
at index y by z

PN.-W x y z a b decrease the value of pattern x
at index y by z and wrap it to
a..b range

218

OP OP (set) (aliases) Description

PN.END x PN.END x y get/set the end location of the
pattern x, default 63

PN.HERE x PN.HERE x y get/set value at current index of
pattern x

PN.I x PN.I x y get/set index position for
pattern x

PN.INS x y z insert value z at index y of
pattern x, shift later values
down, destructive to loop length

PN.L x PN.L x y get/set pattern length of pattern
x. non-destructive to data

PN.MAP x: ... apply the ‘function’ to each value
in pattern x, I takes each
pattern value

PN.MAX x find the first maximum value in
the pattern between the START
and END for pattern x and return
its index

PN.MIN x find the first minimum value in
the pattern between the START
and END for pattern x and return
its index

PN.NEXT x PN.NEXT x y increment index of pattern x
then get/set value

PN.POP x return and remove the value
from the end of pattern x (like a
stack), destructive to loop length

PN.PREV x PN.PREV x y decrement index of pattern x
then get/set value

PN.PUSH x y insert value y to the end of
pattern x (like a stack),
destructive to loop length

PN.REV x reverse the values in pattern x
PN.RM x y delete index y of pattern x, shift

later values up, destructive to
loop length

PN.RND x return a value randomly selected
between the start and the end
position of pattern x

PN.ROT x n rotate the values in pattern x
(between its START and END,
negative rotates backward)

PN.SHUF x shuffle the values in pattern x
(between its START and END)

219

OP OP (set) (aliases) Description

PN.START x PN.START x y get/set the start location of
pattern x, default 0

PN.WRAP x PN.WRAP x y when pattern x reaches its
bounds does it wrap (0/1),
default 1 (enabled)

PRINT x PRINT x y PRT Print a value on a live mode
dashboard or get the printed
value

PROB x: ... potentially execute command
with probability x (0-100)

PROB.SEED PROB.SEED x PROB.SD get / set the random number
generator seed for the PROB
mod

Q Q x Modify the queue entries
Q.2P Q.2P i Copy queue to current

pattern/copy queue to pattern at
index i

Q.ADD x Q.ADD x i Perform addition on elements in
queue

Q.AVG Q.AVG x Return the average of the queue
Q.CLR Q.CLR x Clear queue
Q.DIV x Q.DIV x i Perform division on elements in

queue
Q.GRW Q.GRW x Get/set grow state
Q.I i Q.I i x Get/set value of elements at

index
Q.MAX Q.MAX x Get/set maximum value
Q.MIN Q.MIN x Get/set minimum value
Q.MOD x Q.MOD x i Perform module (%) on elements

in queue
Q.MUL x Q.MUL x i Perform multiplication on

elements in queue
Q.N Q.N x The queue length
Q.P2 Q.P2 i Copy current pattern to

queue/copy pattern at index i to
queue

Q.REV Reverse queue
Q.RND Q.RND x Get random element/randomize

elements
Q.SH Q.SH x Shift elements in queue
Q.SRT Q.SRT Sort all or part of queue
Q.SUB x Q.SUB x i Perform subtraction on

elements in queue

220

OP OP (set) (aliases) Description

Q.SUM Q.SUM x Get sum of elements
QT x y round x to the closest multiple

of y (quantise)
QT.B x quantize 1V/OCT signal x to

scale defined by N.B
QT.BX i x quantize 1V/OCT signal x to

scale defined by N.BX in scale
index i

QT.CS x r s d c quantize 1V/OCT signal x to
chord c (1-7) from scale s (0-8,
reference N.S scales) at degree
d (1-7) with root 1V/OCT pitch r

QT.S x r s quantize 1V/OCT signal x to
scale s (0-8, reference N.S
scales) with root 1V/OCT pitch r

R R x get a random number/set
R.MIN and R.MAX to same
value x (effectively allowing R to
be used as a global variable)

R.MAX x set the upper end of the range
from -32768 – 32767, default:
16383

R.MIN x set the lower end of the range
from -32768 – 32767, default: 0

RAND x RND generate a random number
between 0 and x inclusive

RAND.SEED RAND.SEED x RAND.SD
, R.SD

get / set the random number
generator seed for R, RRAND, and
RAND ops

RRAND x y RRND generate a random number
between x and y inclusive

RROT x y >>> circular right shift x by y bits,
wrapping around when bits fall
off the end

RSH x y >> right shift x by y bits, in effect
divide x by 2 to the power of y

S: ... Place a command onto the stack
S.ALL Execute all entries in the stack
S.CLR Clear all entries in the stack
S.L Get the length of the stack
S.POP Execute the most recent entry
SC.CV x y CV target value for the ER-301

virtual output x to value y

221

OP OP (set) (aliases) Description

SC.CV.OFF x y CV offset added to the ER-301
virtual output x

SC.CV.SET x Set CV value for the ER-301
virtual output x

SC.CV.SLEW x y Set the CV slew time for the
ER-301 virtual output x in ms

SC.TR x y Set trigger output for the ER-301
virtual output x to y (0-1)

SC.TR.POL x y Set polarity of trigger for the
ER-301 virtual output x to y (0-1)

SC.TR.PULSE x SC.TR.P Pulse the ER-301 virtual trigger
output x

SC.TR.TIME x y Set the pulse time for the ER-301
virtual trigger x to y in ms

SC.TR.TOG x Flip the state for the ER-301
virtual trigger output x

SCALE a b x y i SCL scale i from range a to b to
range x to y, i.e. i * (y - x)
/ (b - a)

SCALE a b i SCL0 scale i from range 0 to a to
range 0 to b

SCENE SCENE x get the current scene number, or
load scene x (0-31)

SCENE.G x load scene x (0-31) without
loading grid control states

SCENE.P x load scene x (0-31) without
loading pattern state

SCRIPT SCRIPT x $ get current script number, or
execute script x (1-10),
recursion allowed

SCRIPT.POL x SCRIPT.POL x p $.POL get script x trigger polarity, or set
polarity p (1 rising edge, 2
falling, 3 both)

SEED SEED x get / set the random number
generator seed for all SEED ops

SGN x sign function: 1 for positive, -1
for negative, 0 for 0

SKIP x: ... run the command every time
except the xth time.

STATE x Read the current state of input x
SUB x y - subtract y from x
SYNC x synchronizes all EVERY and

SKIP counters to offset x.

222

OP OP (set) (aliases) Description

T T x get / set the variable T, typically
used for time, default 0

TI.IN x reads the value of IN jack x;
default return range is from
-16384 to 16383 - representing
-10V to +10V; return range can
be altered by the TI.IN.MAP
command

TI.IN.CALIB x y calibrates the scaling for IN jack
x; y of -1 sets the -10V point; y
of 0 sets the 0V point; y of 1
sets the +10V point

TI.IN.INIT x initializes IN jack x back to the
default boot settings and
behaviors; neutralizes mapping
(but not calibration)

TI.IN.MAP x y z maps the IN values for input jack
x across the range y - z (default
range is -16384 to 16383 -
representing -10V to +10V)

TI.IN.N x return the quantized note
number for IN jack x using the
scale set by TI.IN.SCALE

TI.IN.QT x return the quantized value for IN
jack x using the scale set by
TI.IN.SCALE; default return
range is from -16384 to 16383 -
representing -10V to +10V

TI.IN.SCALE x select scale # y for IN jack x;
scales listed in full description

TI.INIT d initializes all of the PARAM and
IN inputs for device number d
(1-8)

TI.PARAM x TI.PRM reads the value of PARAM knob
x; default return range is from 0
to 16383; return range can be
altered by the TI.PARAM.MAP
command

TI.PARAM.CALIB
x y

TI.PRM.CALIBcalibrates the scaling for PARAM
knob x; y of 0 sets the bottom
bound; y of 1 sets the top bound

TI.PARAM.INIT x TI.PRM.INITinitializes PARAM knob x back to
the default boot settings and
behaviors; neutralizes mapping
(but not calibration)

223

OP OP (set) (aliases) Description

TI.PARAM.MAP x
y z

TI.PRM.MAPmaps the PARAM values for
input x across the range y - z
(defaults 0-16383)

TI.PARAM.N x TI.PRM.Nreturn the quantized note
number for PARAM knob x using
the scale set by
TI.PARAM.SCALE

TI.PARAM.QT x TI.PRM.QTreturn the quantized value for
PARAM knob x using the scale
set by TI.PARAM.SCALE;
default return range is from 0 to
16383

TI.PARAM.SCALE
x

TI.PRM.SCALEselect scale # y for PARAM knob
x; scales listed in full description

TI.RESET d resets the calibration data for
TXi number d (1-8) to its factory
defaults (no calibration)

TI.STORE d stores the calibration data for
TXi number d (1-8) to its internal
flash memory

TIME TIME x timer value, counts up in ms.,
wraps after 32s, can be set

TIME.ACT TIME.ACT x enable or disable timer counting,
default 1

TO.CV x CV target output x; y values are
bipolar (-16384 to +16383) and
map to -10 to +10

TO.CV.CALIB x Locks the current offset
(CV.OFF) as a calibration offset
and saves it to persist between
power cycles for output x.

TO.CV.INIT x initializes CV output x back to
the default boot settings and
behaviors; neutralizes offsets,
slews, envelopes, oscillation,
etc.

TO.CV.LOG x y translates the output for CV
output x to logarithmic mode y;
y defaults to 0 (off); mode 1 is
for 0-16384 (0V-10V), mode 2 is
for 0-8192 (0V-5V), mode 3 is for
0-4096 (0V-2.5V), etc.

TO.CV.N x y target the CV to note y for
output x; y is indexed in the
output’s current CV.SCALE

224

OP OP (set) (aliases) Description

TO.CV.N.SET x y set the CV to note y for output x;
y is indexed in the output’s
current CV.SCALE (ignoring
SLEW)

TO.CV.OFF x y set the CV offset for output x; y
values are added at the final
stage

TO.CV.QT x y CV target output x; y is
quantized to output’s current
CV.SCALE

TO.CV.QT.SET x y set the CV for output x (ignoring
SLEW); y is quantized to output’s
current CV.SCALE

TO.CV.RESET x Clears the calibration offset for
output x

TO.CV.SCALE x y select scale # y for CV output x;
scales listed in full description

TO.CV.SET x y set the CV for output x (ignoring
SLEW); y values are bipolar
(-16384 to +16383) and map to
-10 to +10

TO.CV.SLEW x y set the slew amount for output
x; y in milliseconds

TO.CV.SLEW.M x y set the slew amount for output
x; y in minutes

TO.CV.SLEW.S x y set the slew amount for output
x; y in seconds

TO.ENV x y trigger the attack stage of output
x when y changes to 1, or decay
stage when it changes to 0

TO.ENV.ACT x y activates/deactivates the AD
envelope generator for the CV
output x; y turns the envelope
generator off (0 - default) or on
(1); CV amplitude is used as the
peak for the envelope and needs
to be > 0 for the envelope to be
perceivable

TO.ENV.ATT x y set the envelope attack time to y
for CV output x; y in
milliseconds (default 12 ms)

TO.ENV.ATT.M x y set the envelope attack time to y
for CV output x; y in minutes

TO.ENV.ATT.S x y set the envelope attack time to y
for CV output x; y in seconds

225

OP OP (set) (aliases) Description

TO.ENV.DEC x y set the envelope decay time to y
for CV output x; y in
milliseconds (default 250 ms)

TO.ENV.DEC.M x y set the envelope decay time to y
for CV output x; y in minutes

TO.ENV.DEC.S x y set the envelope decay time to y
for CV output x; y in seconds

TO.ENV.EOC x n at the end of cycle of CV output
x, fires a PULSE to the trigget
output n

TO.ENV.EOR x n at the end of rise of CV output x,
fires a PULSE to the trigget
output n

TO.ENV.LOOP x y causes the envelope on CV
output x to loop for y times

TO.ENV.TRIG x triggers the envelope at CV
output x to cycle; CV amplitude
is used as the peak for the
envelope and needs to be > 0
for the envelope to be
perceivable

TO.INIT d initializes all of the TR and CV
outputs for device number d
(1-8)

TO.KILL d cancels all TR pulses and CV
slews for device number d (1-8)

TO.M d y sets the 4 independent
metronome intervals for device
d (1-8) to y in milliseconds;
default 1000

TO.M.ACT d y sets the active status for the 4
independent metronomes on
device d (1-8) to y (0/1); default
0 (disabled)

TO.M.BPM d y sets the 4 independent
metronome intervals for device
d to y in Beats Per Minute

TO.M.COUNT d y sets the number of repeats
before deactivating for the 4
metronomes on device d to y;
default 0 (infinity)

TO.M.M d y sets the 4 independent
metronome intervals for device
d to y in minutes

226

OP OP (set) (aliases) Description

TO.M.S d y sets the 4 independent
metronome intervals for device
d to y in seconds; default 1

TO.M.SYNC d synchronizes the 4 metronomes
for device number d (1-8)

TO.OSC x y Targets oscillation for CV output
x to y

TO.OSC.CTR x y centers the oscillation on CV
output x to y; y values are
bipolar (-16384 to +16383) and
map to -10 to +10

TO.OSC.CYC x y targets the oscillator cycle
length to y for CV output x with
the portamento rate determined
by the TO.OSC.SLEW value; y is
in milliseconds

TO.OSC.CYC.M x y targets the oscillator cycle
length to y for CV output x with
the portamento rate determined
by the TO.OSC.SLEW value; y is
in minutes

TO.OSC.CYC.M.SET
x y

sets the oscillator cycle length
to y for CV output x (ignores
CV.OSC.SLEW); y is in minutes

TO.OSC.CYC.S x y targets the oscillator cycle
length to y for CV output x with
the portamento rate determined
by the TO.OSC.SLEW value; y is
in seconds

TO.OSC.CYC.S.SET
x y

sets the oscillator cycle length
to y for CV output x (ignores
CV.OSC.SLEW); y is in seconds

TO.OSC.CYC.SET
x y

sets the oscillator cycle length
to y for CV output x (ignores
CV.OSC.SLEW); y is in
milliseconds

TO.OSC.FQ x y targets oscillation for CV output
x to frequency y in Hertz

TO.OSC.FQ.SET x
y

targets oscillation for CV output
x to frequency y in Hertz
(ignores slew)

TO.OSC.LFO x y Targets oscillation for CV output
x to LFO frequency y in
millihertz

227

OP OP (set) (aliases) Description

TO.OSC.LFO.SET
x y

Targets oscillation for CV output
x to LFO frequency y in
millihertz (ignores slew)

TO.OSC.N x y targets oscillation for CV output
x to note y

TO.OSC.N.SET x y sets oscillation for CV output x
to note y (ignores slew)

TO.OSC.PHASE x y sets the phase offset of the
oscillator on CV output x to y (0
to 16383); y is the range of one
cycle

TO.OSC.QT x y targets oscillation for CV output
x to y

TO.OSC.QT.SET x
y

set oscillation for CV output x to
y, quantized to the current scale
(ignores slew)

TO.OSC.RECT x y rectifies the polarity of the
oscillator for output x to y; 0 is
no rectification, +/-1 is partial
rectification, +/-2 is full
rectification

TO.OSC.SCALE x y select scale # y for CV output x;
scales listed in full description

TO.OSC.SET x y set oscillation for CV output x to
y (ignores slew)

TO.OSC.SLEW x y sets the frequency slew time
(portamento) for the oscillator
on CV output x to y; y in
milliseconds

TO.OSC.SLEW.M x
y

sets the frequency slew time
(portamento) for the oscillator
on CV output x to y; y in minutes

TO.OSC.SLEW.S x
y

sets the frequency slew time
(portamento) for the oscillator
on CV output x to y; y in
seconds

TO.OSC.SYNC x resets the phase of the oscillator
on CV output x (relative to
TO.OSC.PHASE)

TO.OSC.WAVE x y set the waveform for output x to
y; y range is 0-4500, blending
between 45 waveforms

228

OP OP (set) (aliases) Description

TO.OSC.WIDTH x y sets the width of the pulse wave
on output x to y; y is a
percentage of total width (0 to
100); only affects waveform
3000

TO.TR x y sets the TR value for output x to
y (0/1)

TO.TR.INIT x initializes TR output x back to
the default boot settings and
behaviors; neutralizes
metronomes, dividers, pulse
counters, etc.

TO.TR.M x y sets the independent
metronome interval for output x
to y in milliseconds; default
1000

TO.TR.M.ACT x y sets the active status for the
independent metronome for
output x to y (0/1); default 0
(disabled)

TO.TR.M.BPM x y sets the independent
metronome interval for output x
to y in Beats Per Minute

TO.TR.M.COUNT x
y

sets the number of repeats
before deactivating for output x
to y; default 0 (infinity)

TO.TR.M.M x y sets the independent
metronome interval for output x
to y in minutes

TO.TR.M.MUL x y multiplies the M rate on TR
output x by y; y defaults to 1 -
no multiplication

TO.TR.M.S x y sets the independent
metronome interval for output x
to y in seconds; default 1

TO.TR.M.SYNC x synchronizes the PULSE for
metronome on TR output
number x

TO.TR.POL x y sets the polarity for TR output n
TO.TR.PULSE x TO.TR.P pulses the TR value for output x

for the duration set by
TO.TR.TIME/S/M

TO.TR.PULSE.DIV
x y

TO.TR.P.DIVsets the clock division factor for
TR output x to y

TO.TR.PULSE.MUTE
x y

TO.TR.P.MUTEmutes or un-mutes TR output x;
y is 1 (mute) or 0 (un-mute)

229

OP OP (set) (aliases) Description

TO.TR.TIME x y sets the time for TR.PULSE on
output n; y in milliseconds

TO.TR.TIME.M x y sets the time for TR.PULSE on
output n; y in minutes

TO.TR.TIME.S x y sets the time for TR.PULSE on
output n; y in seconds

TO.TR.TOG x toggles the TR value for output x
TO.TR.WIDTH x y sets the time for TR.PULSE on

output n based on the width of
its current metronomic value; y
in percentage (0-100)

TOSS randomly return 0 or 1
TOSS.SEED TOSS.SEED x TOSS.SD get / set the random number

generator seed for the TOSS op
TR x TR x y Set trigger output x to y (0-1)
TR.POL x TR.POL x y Set polarity of trigger output x to

y (0-1)
TR.PULSE x TR.P Pulse trigger output x
TR.TIME x TR.TIME x y Set the pulse time of trigger x to

y ms
TR.TOG x Flip the state of trigger output x
V x converts a voltage to a value

usable by the CV outputs (x
between 0 and 10)

VN x converts 1V/OCT value x to an
equal temperament note number

VV x converts a voltage to a value
usable by the CV outputs (x
between 0 and 1000, 100
represents 1V)

W x: ... run the command while
condition x is true

W/.SEL x Sets target W/2.0 unit (1 =
primary, 2 = secondary).

W/1: ... Send following W/2.0 OPs to
unit 1 ignoring the currently
selected unit.

W/2: ... Send following W/2.0 OPs to
unit 2 ignoring the currently
selected unit.

W/D.CLK receive clock pulse for
synchronization

W/D.CLK.RATIO
mul div

set clock pulses per buffer time,
with clock mul/div (s8)

230

OP OP (set) (aliases) Description

W/D.CUT count
divisions

jump to loop location as a
fraction of loop length (u8)

W/D.FBK level amount of feedback from read
head to write head (s16V)

W/D.FILT cutoff centre frequency of filter in
feedback loop (s16V)

W/D.FREEZE
is_active

deactivate record head to freeze
the current buffer (s8)

W/D.FREQ volts manipulate tape speed with
musical values (s16V)

W/D.FREQ.RNG
freq_range

TBD (s8)

W/D.LEN count
divisions

set buffer loop length as a
fraction of buffer time (u8)

W/D.MIX fade fade from dry to delayed signal
W/D.MOD.AMT
amount

set the amount (s16V) of delay
line modulation to be applied

W/D.MOD.RATE
rate

set the multiplier for the
modulation rate (s16V)

W/D.PLUCK
volume

pluck the delay line with noise at
volume (s16V)

W/D.POS count
divisions

set loop start location as a
fraction of buffer time (u8)

W/D.RATE
multiplier

direct multiplier (s16V) of
tape speed

W/D.TIME
seconds

set delay buffer length in
seconds (s16V), when rate == 1

W/S.AR.MODE
is_ar

in attack-release mode, all notes
are plucked and no release
is required’

W/S.CURVE curve cross-fade waveforms:
-5=square, 0=triangle, 5=sine
(s16V)

W/S.FM.ENV
amount

amount of vactrol envelope
applied to fm index, -5 to +5
(s16V)

W/S.FM.INDEX
index

amount of FM modulation.
-5=negative, 0=minimum,
5=maximum (s16V)

W/S.FM.RATIO
num den

ratio of the FM modulator to
carrier as a ratio. floating point
values up to 20.0 supported
(s16V)

231

OP OP (set) (aliases) Description

W/S.LPG.SYM
symmetry

vactrol attack-release ratio.
-5=fastest attack, 5=long swells
(s16V)

W/S.LPG.TIME
time

vactrol time (s16V) constant.
-5=drones, 0=vtl5c3, 5=blits

W/S.NOTE pitch
level

dynamically assign a voice, set
to pitch (s16V), strike with
velocity(s16V)

W/S.PATCH jack
param

patch a hardware jack (s8) to a
param (s8) destination

W/S.PITCH voice
pitch

set voice (s8) to pitch (s16V)
in volts-per-octave

W/S.POLY pitch
level

As W/S.NOTE but across dual
W/. Switches between primary
and secondary units every 4
notes or until reset using
W/S.POLY.RESET.

W/S.POLY.RESET Resets W/S.POLY note count.
W/S.RAMP ramp waveform symmetry:

-5=rampwave, 0=triangle,
5=sawtooth (NB: affects FM
tone)

W/S.VEL voice
velocity

strike the vactrol of voice (s8)
at velocity (s16V) in volts

W/S.VOICES
count

set number of polyphonic voices
to allocate. use 0 for unison
mode (s8)

W/S.VOX voice
pitch velocity

set voice (s8) to pitch (s16V)
and strike the vactrol at
velocity (s16V)

W/T.CLEARTAPE WARNING! Erases all recorded
audio on the tape!

W/T.ECHOMODE
is_echo

Set to 1 to playback before
erase. 0 (default) erases first
(s8)

W/T.ERASE.LVL
level

Strength of erase head when
recording. 0 is overdub, 1 is
overwrite. Opposite of feedback
(s16V)

W/T.FREQ freq Set speed as a frequency
(s16V) style value. Maintains
reverse state

W/T.LOOP.ACTIVE
state

Set the state of looping (s8)

W/T.LOOP.END Set the current time as the loop
end, and jump to start

232

OP OP (set) (aliases) Description

W/T.LOOP.NEXT
direction

Move loop brace
forward/backward by length of
loop. Zero jumps to loop start
(s8)

W/T.LOOP.SCALE
scale

Mul(Positive) or Div(Negative)
loop brace by arg. Zero resets to
original window (s8)

W/T.LOOP.START Set the current time as the
beginning of a loop

W/T.MONITOR.LVL
gain

Level of input passed directly to
output (s16V)

W/T.PLAY
playback

Set the playback state. -1 will
flip playback direction (s8)

W/T.REC active Sets recording state to active
(s8)

W/T.REC.LVL
gain

Level of input material recorded
to tape (s16V)

W/T.REV Reverse the direction of
playback

W/T.SEEK
seconds sub

Move playhead relative to
current position (s16)

W/T.SPEED speed
deno

Set speed as a rate, or ratio.
Negative values are reverse
(s16V)

W/T.TIME
seconds sub

Move playhead to an arbitrary
location on tape (s16)

WRAP x y z WRP limit the value x to the range y to
z inclusive, but with wrapping

WS.CUE x Go to a cuepoint relative to the
playhead position. 0 retriggers
the current location. 1 jumps to
the next cue forward. -1 jumps
to the previous cue in the
reverse. These actions are
relative to playback direction
such that 0 always retriggers the
most recently passed location

WS.LOOP x Set the loop state on/off. 0 is
off. Any other value turns loop
on

WS.PLAY x Set playback state and direction.
0 stops playback. 1 sets forward
motion, while -1 plays in reverse

233

OP OP (set) (aliases) Description

WS.REC x Set recording mode. 0 is
playback only. 1 sets overdub
mode for additive recording. -1
sets overwrite mode to replace
the tape with your input

WW.END x Set the loop end position (0-15)
WW.MUTE1 x Mute trigger 1 (0 = on, 1 = mute)
WW.MUTE2 x Mute trigger 2 (0 = on, 1 = mute)
WW.MUTE3 x Mute trigger 3 (0 = on, 1 = mute)
WW.MUTE4 x Mute trigger 4 (0 = on, 1 = mute)
WW.MUTEA x Mute CV A (0 = on, 1 = mute)
WW.MUTEB x Mute CV B (0 = on, 1 = mute)
WW.PATTERN x Change pattern (0-15)
WW.PMODE x Set the loop play mode (0-5)
WW.POS x Cut to position (0-15)
WW.PRESET x Recall preset (0-7)
WW.QPATTERN x Change pattern (0-15) after

current pattern ends
WW.START x Set the loop start position (0-15)
WW.SYNC x Cut to position (0-15) and

hard-sync the clock (if clocked
internally)

X X x get / set the variable X, default 0
Y Y x get / set the variable Y, default 0
Z Z x get / set the variable Z, default 0
^ x y bitwise xor x ^ y
| x y bitwise or x
~ x bitwise not, i.e.: inversion of x

234

Missing documentation

EX.LP.DOWNQ, EX.LP.REVQ, EX.M.CC.POUND, EX.M.N.POUND, EX.M.NO.POUND,
EX.N.POUND,EX.NO.POUND,EX.POUND,G.XYP,G.XYP.X,G.XYP.Y,I2M.C.MINUS,
I2M.C.PLUS,I2M.C.POUND,I2M.C.TTILDE,I2M.C.VTILDE,I2M.CC.OFF.POUND,
I2M.CC.POUND, I2M.CC.SET.POUND, I2M.CC.SLEW.POUND, I2M.CCV.POUND,
I2M.MAX.POUND,I2M.MIN.POUND,I2M.MUTE.POUND,I2M.N.POUND,I2M.NO.POUND,
I2M.NRPN.OFF.POUND,I2M.NRPN.POUND,I2M.NRPN.SET.POUND,I2M.NRPN.SLEW.POUND,
I2M.NT.POUND, I2M.POUND, I2M.Q.POUND, I2M.RAT.POUND, I2M.REP.POUND,
I2M.S.POUND, I2M.SOLO.POUND, I2M.T.POUND, I2M.TEST, MI.SYM.DOLLAR,
SYM.AMPERSAND.x3, SYM.AMPERSAND.x4, SYM.DOLLAR.F, SYM.DOLLAR.F1,
SYM.DOLLAR.F2, SYM.DOLLAR.L,SYM.DOLLAR.L1, SYM.DOLLAR.L2, SYM.DOLLAR.S,
SYM.DOLLAR.S1, SYM.DOLLAR.S2, SYM.LEFT.ANGLED.x3, SYM.PIPE.x3,
SYM.PIPE.x4, SYM.RIGHT.ANGLED.x3, WS.S.POLY, WS.S.POLY.RESET, WS.SEL,
WS1, WS2

235

Changelog

v5.0.0

• FIX: fix off-by-one error in P.ROT understanding of pattern length
• FIX: fix CROW.Q3 calls ii.self.query2 instead of ii.self.query3
• FIX: cache currently-running commands to avoid corruption during SCENE ops.
• FIX: delay when opening docs
• FIX: PROB 100 would only execute 99.01% of the time.
• FIX: some G.FDR configurations caused incorrect rendering in grid visualizer
• FIX: fix EX.LP not returning correct values
• FIX: fix QT.B handling of negative voltage input
• IMP: scene load/save code refactor, add scene load/save tests
• IMP: fader ops now support up to four faderbanks
• NEW: new Disting EX ops: dual algorithms, EX.M.N#, EX.M.NO#, EX.M.CC#
• FIX: reset M timer when changing metro rate
• NEW: new Drum Ops: DR.T, DR.V, DR.P
• NEW: I2C2MIDI41 ops
• FIX: fixes a transcription error in the SD drum helper patterns
• NEW: Ten new patterns for DR.V and optimised old patterns
• FIX: fix BPM rounding error
• FIX: support all line ending types for USB load
• FIX: fix STATE not accounting for DEVICE.FLIP
• FIX: fix MIDI IN ops channel number being off by 1
• FIX: improve TR.P accuracy
• FIX: fix KILL not stopping TR pulses in progress
• NEW: new op: SCALE0 / SCL0
• NEW: new ops: $F, $F1, $F2, $L, $L1, $L2, $S, $S1, $S2, I1, I2, FR
• NEW: new op: CV.GET
• NEW: basic menu for reading/writing scenes when a USB stick is inserted
• NEW: new ops: CV.CAL and CV.CAL.RESET to calibrate CV outputs
• FIX: N.CS scales 7 & 8 were incorrectly swapped; make them consistent with N.S

and docs
• FIX: libavr32 update: support CDC grid size detection (e.g. zero), increase HID

message buffer
• NEW: new Disting EX ops: EX.CH, EX.#, EX.N#, EX.NO#
• NEW: apply VCV Rack compatibility patches, so branches off main can be used

in both hardware and software
• FIX: update Disting EX looper ops to work with Disting EX firmware 1.23+
• NEW: new dual W/ ops: W/.SEL, W/S.POLY, W/S.POLY.RESET, W/1, W/2
• NEW: split cheatsheets into separate PDFs for core ops and i2c

41https://github.com/attowatt/i2c2midi

236

https://github.com/attowatt/i2c2midi

v4.0.0

• FIX: LAST SCRIPT in live mode gives time since init script was run
• FIX: negative pattern values are properly read from USB
• FIX: delay when navigating to sections in docs
• NEW: generic i2c ops: IIA, IIS.., IIQ.., IIB..
• NEW: exponential delay operator DEL.G
• NEW: binary and hex format for numbers: B..., X...
• NEW: Disting EX ops
• FIX: LAST n is broken for script 1
• NEW: bitmasked delay and quantize: DEL.B.., QT.B.., QT.BX..
• NEW: scale and chord quantize: QT.S.., QT.CS..
• NEW: bit toggle OP: BTOG..
• NEW: volts to semitones helper OP: VN..
• IMP: DELAY_SIZE increased to 64 from 16
• FIX: scale degree arguments 1-indexed: N.S, N.CS
• NEW: Just Friends 4.0 OPs and dual JF OPs
• NEW: binary scale ops N.B and N.BX
• NEW: reverse binary for numbers: R...
• NEW: reverse binary OP: BREV
• NEW: ES.CV read earthsea CV values
• NEW: added setter for R, sets R.MIN and R.MAX to same value, allowing R to be

used as variable
• NEW: v/oct to hz/v conversion op: HZ
• FIX: W/2.0 ops added
• NEW: W/2.0 ops documentation
• NEW: ><, <>, >=< and <=> OPs, checks if value is within or outside of range
• IMP: new powerful Q OPs
• IMP: Improved line editing movement (forward/backward by word skips interven-

ing space).
• NEW: Delete to end of word command alt-d added.
• NEW: new op: SCENE.P
• NEW: new multi-logic OPs AND3, AND4, OR3 and OR4 with aliases &&&, &&&&, |||

and ||||
• NEW: alias: EV for EVERY
• NEW: live mode dashboard
• NEW: ops to control live mode: LIVE.OFF, LIVE.VARS, LIVE.GRID,
LIVE.DASH, PRINT

• FIX: PN.ROT parameters are swapped
• FIX: better rendering for fine grid faders
• FIX: logical operators should treat all non zero values as true, not just positive

values
• NEW: crow ops
• NEW: TI.PRM.CALIB alias added (was already in the docs)
• FIX: SCENE would crash if parameter was out of bounds

237

v3.2.0

• FIX: improve DAC latency when using CV ops
• NEW: call metro / init with SCRIPT 9 / SCRIPT 10
• NEW: forward (C-f or C-s) and reverse (C-r) search in help mode
• NEW: new ops: LROT (alias <<<), RROT (alias >>>)
• NEW: LSH and RSH shift the opposite direction when passed a negative shift

amount
• NEW: new op: SGN (sign of argument)
• NEW: new kria remote op: KR.DUR
• NEW: new op: NR (binary math pattern generator)
• NEW: new ops: N.S, N.C, N.CS (use western scales and chords to get values

from N table)
• NEW: new ops: FADER.SCALE, FADER.CAL.MIN, FADER.CAL.MAX,
FADER.CAL.RESET for scaling 16n Faderbank values (aliases FB.S,
FB.C.MIN, FB.C.MAX, FB.C.R)

• NEW: new Tracker mode keybinding alt-[] semitone up, down
• NEW: new Tracker mode keybinding ctrl-[] fifth up, down
• NEW: new Tracker mode keybinding shift-[] octave up, down
• NEW: new Tracker mode keybinding alt-<0-9> <0-9> semitones up (0=10,

1=11)
• NEW: new Tracker mode keybinding shift-alt-<0-9> <0-9> semitones

down (0=10, 1=11)
• FIX: dim M in edit mode when metro inactive
• NEW: new pattern ops: P.SHUF, PN.SHUF, P.REV, PN.REV, P.ROT, PN.ROT
• NEW: new pattern mods: P.MAP:, PN.MAP x:

v3.1.0

• NEW: new op: DEVICE.FLIP
• FIX: some keyboards losing keystrokes42

• NEW: new op: DEL.X
• NEW: new op: DEL.R
• IMP: DELAY_SIZE increased to 16 from 8
• NEW: new variables: J & K local script variables
• FIX: metro rate not updated after INIT.SCENE43

• NEW: new ops: SEED, R.SEED, TOSS.SEED, DRUNK.SEED, P.SEED, PROB.SEED
• NEW: new op: SCENE.G
• NEW: new op: SCRIPT.POL, alias $.POL
• NEW: new ansible remote ops: ANS.G, ANS.G.P, ANS.G.LED, ANS.A,
ANS.A.LED

• NEW: new kria remote ops: KR.CUE, KR.PG
42https://github.com/monome/teletype/issues/156
43https://github.com/monome/teletype/issues/174

238

https://github.com/monome/teletype/issues/156
https://github.com/monome/teletype/issues/174

v3.0.0

• NEW: grid integration / grid visualizer / grid control mode
• NEW: multiline copy/paste and editing
• NEW: new keybindings to move by words
• NEW: undo in script editing
• NEW: i2c support for ER-301
• NEW: i2c support for 16n Faderbank
• NEW: i2c support for Matrixarchate
• NEW: i2c support for W/
• NEW: new op: ?
• NEW: new ops: P.MIN, PN.MIN, P.MAX, PN.MAX, P.RND, PN.RND, P.+, PN.+,
P.-, PN.-. P.+W, PN.+W, P.-W, PN.-W

• NEW: new Telex ops: TO.CV.CALIB, TO.ENV
• NEW: new Kria ops: KR.CV, KR.MUTE, KR.TMUTE, KR.CLK, ME.CV
• NEW: new aliases: $, RND, RRND, WRP, SCL
• NEW: telex, ansible, just friends, w/ added to the help screen
• FIX: i2c initialization delayed to account for ER-301 bootup
• FIX: last screen saved to flash
• FIX: knob jitter when loading/saving scenes reduced
• FIX: duplicate commands not added to history44

• FIX: SCALE precision improved
• FIX: PARAM set properly when used in the init script
• FIX: PARAM and IN won’t reset to 0 after INIT.DATA
• FIX: PN.HERE, P.POP, PN.POP will update the tracker screen45

• FIX: P.RM was 1-based, now 0-based46

• FIX: P.RM / PN.RM will not change pattern length if deleting outside of length
range47

• FIX: JI op fixed48

• FIX: TIME and LAST are now 1ms accurate49

• FIX: RAND / RRAND will properly work with large range values50

• FIX: L .. 32767 won’t freeze51

• FIX: I now accessible to child SCRIPTS

v2.2

• NEW: added a cheat sheet PDF
44https://github.com/monome/teletype/issues/99
45https://github.com/monome/teletype/issues/151
46https://github.com/monome/teletype/issues/149
47https://github.com/monome/teletype/issues/150
48https://llllllll.co/t/teletype-the-ji-op/10553
49https://github.com/monome/teletype/issues/144
50https://github.com/monome/teletype/issues/143
51https://github.com/monome/teletype/issues/148

239

https://github.com/monome/teletype/issues/99
https://github.com/monome/teletype/issues/151
https://github.com/monome/teletype/issues/149
https://github.com/monome/teletype/issues/150
https://llllllll.co/t/teletype-the-ji-op/10553
https://github.com/monome/teletype/issues/144
https://github.com/monome/teletype/issues/143
https://github.com/monome/teletype/issues/148

• NEW: new bitwise ops: &, |, ^, ~, BSET, BCLR, BGET
• NEW: new ops PARAM.SCALE min max and IN.SCALE min max to add static

scaling to inputs
• NEW: blanking screensaver after 90 minutes of keyboard inactivity, any key to

wake
• NEW: new op: CHAOS chaotic sequence generator. Control with CHAOS.ALG and
CHAOS.R

• NEW: new op family: INIT, to clear device state
• NEW: new ops: R, R.MIN, R.MAX programmable RNG
• IMP: profiling code (optional, dev feature)
• IMP: screen now redraws only lines that have changed
• FIX: multiply now saturates at limits, previous behaviour returned 0 at overflow
• FIX: entered values now saturate at int16 limits
• FIX: reduced flash memory consumption by not storing TEMP script
• FIX: I now carries across DEL commands
• FIX: removed TEMP script allocation in flash
• FIX: corrected functionality of JI op for 1volt/octave tuning and removed octave-

wrapping behaviour (now returns exactly the entered ratio)
• FIX: reduced latency of IN op

v2.1

• BREAKING: the I variable is now scoped to the L loop, and does not exist outside
of an execution context. Scripts using I as a general-purpose variable will be
broken.

• FIX: SCENE will not run from INIT script during scene load.
• NEW: Tracker data entry overhaul. Type numbers, press enter to commit.
• NEW: new op: BPM to get milliseconds per beat in given BPM
• NEW: script lines can be disabled / enabled with ctrl-/
• NEW: shift-enter in scene write mode now inserts a line
• NEW: new ops: LAST x for the last time script x was called
• NEW: SCRIPT with no arguments gets the current script number.
• FIX: AVG and Q.AVG now round up properly
• NEW: new op: BREAK to stop the remainder of the script
• NEW: new mod: W [condition]: [statement] will execute statement as

long as condition is true (up to an iteration limit).
• NEW: new mods: EVERY x:, SKIP x:, OTHER: to alternately execute or not

execute a command.
• NEW: new op: SYNC xwill synchronize all EVERY and SKIP line to the same step.
• NEW: new feature: @ - the turtle. Walks around the pattern grid. Many ops, see

documentation.
• OLD: ctrl-F1 to F8 mute/unmute scripts.
• NEW: ctrl-F9 enables/disables METRO.
• FIX: recursive delay fix. Now you can 1: DEL 500: SCRIPT 1 for temporal

recursion.
• FIX: KILL now clears TR output as well as disabling the METRO script.

240

• FIX: if / else conditions no longer transcend their script
• IMP: functional exectuion stack for SCRIPT operations

v2.0.1

• FIX: update IRQ masking which prevents screen glitches and crashing under
heavy load

v2.0

• BREAKING: remove II op. Ops that required it will now work with out it. (e.g. II
MP.PRESET 1 will become just MP.PRESET 1)

• BREAKING: merge the MUTE and UNMUTE ops. Now MUTE x will return the mute
status for trigger x (0 is unmuted, 1 is muted), and MUTE x y will set the mute
for trigger x (y = 0 to unmute, y = 1 to mute)

• BREAKING: remove unused Meadowphysics ops: MP.SYNC, MP.MUTE,
MP.UNMUTE, MP.FREEZE, MP.UNFREEZE

• BREAKING: rename Ansible Meadowphysics ops to start with ME
• NEW: sub commands, use a ; separator to run multiple commands on a single

line, e.g. X 1; Y 2
• NEW: key bindings rewritten
• NEW: aliases: + for ADD, - for SUB, * for MUL, / for DIV, % for MOD, << for LSH, >>

for RSH, == for EQ, != for NE, < for LT, > for GT, <= for LTE, >= for GTE, ! for EZ,
&& for AND, || for OR, PRM for PARAM, TR.P for TR.PULSE

• NEW: new ops: LTE (less than or equal), and GTE (greater than or equal)
• NEW: new pattern ops: PN.L, PN.WRAP, PN.START, PN.END, PN.I, PN.HERE,
PN.NEXT, PN.PREV, PN.INS, PN.RM, PN.PUSH and PN.POP

• NEW: USB disk loading and saving works at any time
• NEW: M limited to setting the metronome speed to 25ms, added M! to allow set-

ting the metronome at unsupported speeds as low as 2ms
• NEW: TELEX Aliases: TO.TR.P for TO.TR.PULSE (plus all sub-commands) and
TI.PRM for TI.PARAM (plus all sub-commands)

• NEW: TELEX initialization commands: TO.TR.INIT n, TO.CV.INIT n,
TO.INIT x, TI.PARAM.INIT n, TI.IN.INIT n, and TI.INIT x

• IMP: new Ragel parser backend
• IMP: script recursion enhanced, maximum recursion depth is 8, and self recursion

is allowed
• IMP: removed the need to prefix : and ; with a space, e.g. IF X : TR.PULSE
1 becomes IF X: TR.PULSE

• IMP: AND and OR now work as boolean logic, rather than bitwise, XOR is an alias
for NE

• FIX: divide by zero errors now explicitly return a 0 (e.g. DIV 5 0 now returns
0 instead of -1), previously the behaviour was undefined and would crash the
simulator

241

• FIX: numerous crashing bugs with text entry
• FIX: i2c bus crashes under high M times with external triggers
• FIX: P.I and PN.I no longer set values longer than allowed
• FIX: VV works correctly with negative values

v1.4.1

• NEW: added Ansible remote commands LV.CV and CY.CV
• NEW: Added TELEX Modules Support for the TXi and the TXo
• NEW: 75 New Operators Across the Two Modules
• NEW: Supports all basic Teletype functions (add TI and TO to the commands you

already know)
• NEW: Extended functionality allows for additional capabilities for existing func-

tions
• NEW: Experimental input operators add capabilities such as input range mapping

and quantization
• NEW: Experimental output operators add oscillators, envelopes, independent

metronomes, pulse dividing, etc.
• NEW: Full List of Methods Found and Maintained Here52

v1.2.1

• NEW: Just Friends ops: JF.GOD, JF.MODE, JF.NOTE, JF.RMODE, JF.RUN,
JF.SHIFT, JF.TICK, JF.TR, JF.TUNE, JF.VOX, JF.VTR

v1.2

• NEW: Ansible support added to ops: CV, CV.OFF, CV.SET, CV.SLEW, STATE, TR,
TR.POL, TR.PULSE, TR.TIME, TR.TOG

• NEW: P.RM will also return the value removed
• NEW: ER op
• IMP: a TR.TIME of 0 will disable the pulse
• IMP: O.DIR renamed to O.INC, it’s the value by which O is incremented when it

is accessed
• IMP: IF, ELIF, ELSE status is reset on each script run
• IMP: key repeat now works for all keypresses
• FIX: FLIP won’t interfere with the value of O
• FIX: the O op now returns it’s set value before updating itself
• FIX: the DRUNK op now returns it’s set value before updating itself
• FIX: P.START and P.END were set to 1 when set with too large values, now are

set to 63
52https://github.com/bpcmusic/telex/blob/master/commands.md

242

https://github.com/bpcmusic/telex/blob/master/commands.md

• FIX: CV.SLEW is correctly initialised to 1 for all outputs
• FIX: several bugs where pattern length wasn’t updated in track mode
• FIX: fixed [and] not updating values in track mode

v1.1

• NEW: USB flash drive read/write
• NEW: SCRIPT op for scripted execution of other scripts!
• NEW: MUTE and UNMUTE ops for disabling trigger input
• NEW: hotkeys for MUTE toggle per input (meta-shift-number)
• NEW: screen indication in live mode for MUTE status
• NEW: SCALE op for scaling number from one range to another
• NEW: JI op just intonation helper
• NEW: STATE op to read current state of input triggers 1-8 (low/high = 0/1)
• NEW: keypad executes scripts (works for standalone USB keypads and full-sized

keyboards)
• NEW: KILL op clears delays, stack, CV slews, pulses
• NEW: hotkey meta+ESC executes KILL
• NEW: ABS op absolute value, single argument
• NEW: FLIP op variable which changes state (0/1) on each read
• NEW: logic ops: AND, OR, XOR
• NEW: O ops: O.MIN, O.MAX, O.WRAP, O.DIR for counter range control
• NEW: DRUNK ops: DRUNK.MIN, DRUNK.MAX, DRUNK.WRAP for range control
• NEW: TR.POL specifies the polarity of TR.PULSE
• NEW: if powered down in tracker mode, will power up in tracker mode
• IMP: TR.PULSE retrigger behaviour now predictable
• IMP: mode switch keys more consistent (not constantly resetting to live mode)
• FIX: bug in command history in live mode
• FIX: EXP op now exists
• FIX: P and PN parse error
• FIX: possible crash on excess length line entry
• FIX: CV wrapping with negative CV.OFF values
• FIX: INIT script executed now on keyboardless scene recall
• FIX: Q.AVG overflow no more
• FIX: P.PUSH will fully fill a pattern
• FIX: CV.SET followed by slewed CV in one command works
• FIX: DEL 0 no longer voids command

v1.0

• Initial release

243

	Introduction
	Updates
	v5.0.0
	v4.0.0
	v3.2.0
	Version 3.1
	Version 3.0
	Version 2.2
	Version 2.1
	Version 2.0

	Quickstart
	Panel
	LIVE mode
	EDIT mode
	Patterns
	Scenes
	USB Backup
	Commands
	Continuing

	Keys
	Global key bindings
	Text editing
	Live mode
	Edit mode
	Tracker mode
	Preset read mode
	Preset write mode
	Help mode

	OPs and MODs
	Variables
	Hardware
	Pitch
	Rhythm
	Metronome
	Randomness
	Control flow
	Maths
	Delay
	Stack
	Patterns
	Queue
	Turtle
	Grid
	MIDI in
	Calibration
	Generic I2C
	Ansible
	White Whale
	Meadowphysics
	Earthsea
	Orca
	Just Friends
	16n
	ER-301
	TELEXi
	TELEXo
	Crow
	W/
	W/2.0
	W/2.0 tape
	W/2.0 delay
	W/2.0 synth
	Disting EX
	Matrixarchate
	i2c2midi

	Advanced
	Teletype terminology
	Sub commands
	Aliases
	Avoiding non-determinism
	Grid integration

	Alphabetical list of OPs and MODs
	Missing documentation
	Changelog
	v5.0.0
	v4.0.0
	v3.2.0
	v3.1.0
	v3.0.0
	v2.2
	v2.1
	v2.0.1
	v2.0
	v1.4.1
	v1.2.1
	v1.2
	v1.1
	v1.0

